For all $x\in\mathbb{R}\backslash\{0\}$ the cardinal sine function $\text{sinc}(x) = \sin(x)/x$ is trivially bounded by
$$ |\text{sinc}(x)| \le \frac{1}{|x|},$$
since $\sin(x)\le 1$. I am wondering if the sine integral can similarly be bounded by
$$ \left|\text{Si}(x) - \frac{\pi}{2}\right| = \left|\text{si}(x)\right| \le \frac{1}{|x|} \qquad\forall x>0,$$
where $\text{Si}(x) = \int_0^x \text{sinc}(y)\,\mathrm{d}y$ and $\text{si}(x) = -\int_x^\infty \text{sinc}(y)\,\mathrm{d}y$. When plotting the graphs it looks like this might be true.