28

We want to evaluate $$\lim_{x \to -8}\frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}}.$$The solving process can be written as follows:\begin{align*}\lim_{x \to -8}\frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}}&=\lim_{x \to -8}\left[\frac{(\sqrt{1-x}-3)(\sqrt{1-x}+3)}{(2+\sqrt[3]{x})(4-2\sqrt[3]{x}+\sqrt[3]{x^2})}\cdot \frac{4-2\sqrt[3]{x}+\sqrt[3]{x^2}}{\sqrt{1-x}+3}\right]\\&=\lim_{x \to -8}\left[\frac{-(x+8)}{x+8}\cdot \frac{4-2\sqrt[3]{x}+\sqrt[3]{x^2}}{\sqrt{1-x}+3}\right]\\&=-\lim_{x \to -8} \frac{4-2\sqrt[3]{x}+\sqrt[3]{x^2}}{\sqrt{1-x}+3}\\&=-2.\end{align*}

But when I input this

lim\frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}} as x to -8

into Wolfram|Alpha, it gives the limit $0$.

Why is Wolfram|Alpha making a mistake here?

Em.
  • 16,196
WuKong
  • 14,376
  • 1
  • 18
  • 45

3 Answers3

39

WolframAlpha understands the expression $\sqrt[3]{x}$ for negative x in a different way than you expect.

Try this: lim\frac{\sqrt{1-x}-3}{2+surd(x,3)} as x to -8

Em.
  • 16,196
Pavel R.
  • 1,398
14

If you take the complex roots of $\sqrt[3]{x}$ you get $0$ as the limit, because the denominator is different from zero in this case.

So, Wolfram|Alpha did not make a mistake but just uses a different root of $\sqrt[3]{x}$.

For the real root you get $-2$:

  • $t^3 = -x \Rightarrow \lim_{x \to -8}\frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}} = \lim_{t \to 2}\frac{\sqrt{1+t^3}-3}{2-t} = -f'(2) \mbox{ for } f(t) = \sqrt{1+t^3}$

$$f'(t) = \frac{3t^2}{2\sqrt{1+t^3}}\Rightarrow \lim_{x \to -8}\frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}} = - f'(2) = -2$$

trancelocation
  • 33,349
  • 1
  • 21
  • 46
  • Can you do the same for the other two, imaginary cube roots? – Mitch Oct 08 '18 at 20:13
  • 1
    @Mitch: I am not quite sure what you mean. But, moving along a complex branch would mean: $$\frac{\sqrt{1-x}-3}{2+\sqrt[3]{|x|}\sqrt[3]{-1}} = \frac{\sqrt{1-x}-3}{2+\frac{\sqrt[3]{|x|}}{2}(1\pm i\sqrt{3})} \stackrel{x\in \mathbb{R}, x\to -8}{\longrightarrow} \frac{0}{3 \pm i\sqrt{3}} = 0$$ – trancelocation Oct 09 '18 at 06:22
4

In Mathematica 11.3 I get

In[1]:= Limit[(Sqrt[1 - x] - 3)/(2 + CubeRoot[x]), x -> -8]
Out[1]= -2

Mathematica Documentation says CubeRoot[x] gives the real-valued cube root of $x$.

Even

In[4]:= -8^(1/3)
Out[4]= -2

Mathematica gives me the correct answers

grg
  • 1,003
user1483
  • 181
  • 3