The evaluation of the integral (using the DUIS) has already been provided. Here, I present a different approach. It uses a beautiful product of sine functions, i.e., $\displaystyle\prod_{k=1}^{n-1}\sin\left(\frac{k \pi}{n}\right) = \frac{n}{2^{n-1}}$.
Note that $f(x)=\ln(\sin(x))$ is symmetric about $x=\frac\pi2$ since $f\left(2.\frac\pi2-x\right)=f(\pi-x)=f(x)$. So, $\displaystyle\int_0^\pi\ln(\sin(x))\ \mathrm dx=2\int_0^\frac\pi2\ln(\sin(x))\ \mathrm dx=2\int_{\frac\pi2}^\pi\ln(\sin(x))\ \mathrm dx$.
Now, the given integral can be evaluated as:
$$\displaystyle\begin{align*}\int_0^\frac\pi2\ln(\sin(x))\ \mathrm dx &=\frac12\int_0^\pi\ln(\sin(x))\ \mathrm dx\\&=\frac12\displaystyle\lim_{n\rightarrow\infty}\bigg[\bigg(\frac{\pi-0}{n}\bigg)\sum_{k=1}^{n-1}\ln\bigg(\sin\bigg(0+\frac{(\pi-0)k}{n}\bigg)\bigg)\bigg]\\ &=\displaystyle\frac\pi2\lim_{n\rightarrow\infty}\bigg[\frac{1}{n}\ln\bigg(\prod_{k=1}^{n-1}\sin\bigg(\frac{k\pi}{n}\bigg)\bigg)\bigg]\\ &=\displaystyle\frac\pi2\lim_{n\rightarrow\infty}\bigg[\frac{1}{n}\ln\bigg(\frac{n}{2^{n-1}}\bigg)\bigg]\\ &=\displaystyle\frac\pi2\lim_{n\rightarrow\infty}\bigg[\frac{\ln n}{n}-\bigg(1-\frac{1}{n}\bigg)\ln2\bigg]\\ \color{red}{\int_0^\frac\pi2\ln(\sin(x))\ \mathrm dx}&\color{red}{=\displaystyle-\frac\pi2\ln2}\end{align*}$$
Alternatively,
$$\begin{aligned}\mathcal I=\int_0^\frac\pi2\ln(\sin(x))\ \mathrm dx&=\frac12\left(\int_0^\frac\pi2\ln(\sin(x))\ \mathrm dx+\int_0^\frac\pi2\ln\left(\sin\left(\frac\pi2-x\right)\right)\ \mathrm dx\right)\\&=\frac12\left(\int_0^\frac\pi2\ln(\sin(x))\ \mathrm dx+\int_0^\frac\pi2\ln(\cos(x))\ \mathrm dx\right)\\&=\frac12\int_0^\frac\pi2\ln(\sin(x)\cos(x))\ \mathrm dx\\&=\frac12\int_0^\frac\pi2\ln(\sin(2x))\ \mathrm dx-\frac12\int_0^\frac\pi2\ln(2)\ \mathrm dx\\&=\frac{1}{2\cdot2}\int_0^\pi\ln(\sin(u))\ \mathrm du-\frac\pi4\ln2\qquad\text{substitute } u=2x\\\mathcal I&=\frac{\mathcal I}2-\frac\pi4\ln2\\\frac{\mathcal I}2&=-\frac\pi4\ln2\\\color{red}{\int_0^\frac\pi2\ln(\sin(x))\ \mathrm dx=\mathcal I}&\color{red}{=-\frac\pi2\ln2}&
\end{aligned}$$
Hence, the required integral is $$\color{blue}{\boxed{\boxed{\int_0^\frac\pi2\ln(\sin(x))\ \mathrm dx=-\dfrac\pi2\ln2}}}$$
Hope this helps!