Answer to question 1:
\begin{align}
\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{j=1}^{9}~p_{i,j,n} &= \bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} (p_{i,1,n} \lor p_{i,2,n} \lor p_{i,3,n} \lor p_{i,4,n} \lor p_{i,5,n} \lor p_{i,6,n} \lor p_{i,7,n} \lor p_{i,8,n} \lor p_{i,9,n} ) \\
= \bigwedge_{i=1}^{9} &\big(( p_{i,1,1} \lor p_{i,2,1} \lor p_{i,3,1} \lor p_{i,4,1} \lor p_{i,5,1} \lor p_{i,6,1} \lor p_{i,7,1} \lor p_{i,8,1} \lor p_{i,9,1} ) \\
&\land
(p_{i,1,2} \lor p_{i,2,2} \lor p_{i,3,2} \lor p_{i,4,2} \lor p_{i,5,2} \lor p_{i,6,2} \lor p_{i,7,2} \lor p_{i,8,2} \lor p_{i,9,2} ) \\
&\land (p_{i,1,3} \lor p_{i,2,3} \lor p_{i,3,3} \lor p_{i,4,3} \lor p_{i,5,3} \lor p_{i,6,3} \lor p_{i,7,3} \lor p_{i,8,3} \lor p_{i,9,3} ) \\
&\land
(p_{i,1,4} \lor p_{i,2,4} \lor p_{i,3,4} \lor p_{i,4,4} \lor p_{i,5,4} \lor p_{i,6,4} \lor p_{i,7,4} \lor p_{i,8,4} \lor p_{i,9,4} ) \\
&\land
(p_{i,1,5} \lor p_{i,2,5} \lor p_{i,3,5} \lor p_{i,4,5} \lor p_{i,5,5} \lor p_{i,6,5} \lor p_{i,7,5} \lor p_{i,8,5} \lor p_{i,9,5} ) \\
&\land (p_{i,1,6} \lor p_{i,2,6} \lor p_{i,3,6} \lor p_{i,4,6} \lor p_{i,5,6} \lor p_{i,6,6} \lor p_{i,7,6} \lor p_{i,8,6} \lor p_{i,9,6} ) \\
&\land (p_{i,1,7} \lor p_{i,2,7} \lor p_{i,3,7} \lor p_{i,4,7} \lor p_{i,5,7} \lor p_{i,6,7} \lor p_{i,7,7} \lor p_{i,8,7} \lor p_{i,9,7} ) \\
&\land (p_{i,1,8} \lor p_{i,2,8} \lor p_{i,3,8} \lor p_{i,4,8} \lor p_{i,5,8} \lor p_{i,6,8} \lor p_{i,7,8} \lor p_{i,8,8} \lor p_{i,9,8} ) \\
&\land (p_{i,1,9} \lor p_{i,2,9} \lor p_{i,3,9} \lor p_{i,4,9} \lor p_{i,5,9} \lor p_{i,6,9} \lor p_{i,7,9} \lor p_{i,8,9} \lor p_{i,9,9} ) \big) \\[3pt]
= \ & \big(( p_{1,1,1} \lor p_{1,2,1} \lor p_{1,3,1} \lor p_{1,4,1} \lor p_{1,5,1} \lor p_{1,6,1} \lor p_{1,7,1} \lor p_{1,8,1} \lor p_{1,9,1} ) \\
&\land
(p_{1,1,2} \lor p_{1,2,2} \lor p_{1,3,2} \lor p_{1,4,2} \lor p_{1,5,2} \lor p_{1,6,2} \lor p_{1,7,2} \lor p_{1,8,2} \lor p_{1,9,2} ) \\
&\land (p_{1,1,3} \lor p_{1,2,3} \lor p_{1,3,3} \lor p_{1,4,3} \lor p_{1,5,3} \lor p_{1,6,3} \lor p_{1,7,3} \lor p_{1,8,3} \lor p_{1,9,3} ) \\
&\land
(p_{1,1,4} \lor p_{1,2,4} \lor p_{1,3,4} \lor p_{1,4,4} \lor p_{1,5,4} \lor p_{1,6,4} \lor p_{1,7,4} \lor p_{1,8,4} \lor p_{1,9,4} ) \\
&\land
(p_{1,1,5} \lor p_{1,2,5} \lor p_{1,3,5} \lor p_{1,4,5} \lor p_{1,5,5} \lor p_{1,6,5} \lor p_{1,7,5} \lor p_{1,8,5} \lor p_{1,9,5} ) \\
&\land (p_{1,1,6} \lor p_{1,2,6} \lor p_{1,3,6} \lor p_{1,4,6} \lor p_{1,5,6} \lor p_{1,6,6} \lor p_{1,7,6} \lor p_{1,8,6} \lor p_{1,9,6} ) \\
&\land (p_{1,1,7} \lor p_{1,2,7} \lor p_{1,3,7} \lor p_{1,4,7} \lor p_{1,5,7} \lor p_{1,6,7} \lor p_{1,7,7} \lor p_{1,8,7} \lor p_{1,9,7} ) \\
&\land (p_{1,1,8} \lor p_{1,2,8} \lor p_{1,3,8} \lor p_{1,4,8} \lor p_{1,5,8} \lor p_{1,6,8} \lor p_{1,7,8} \lor p_{1,8,8} \lor p_{1,9,8} ) \\
&\land (p_{1,1,9} \lor p_{1,2,9} \lor p_{1,3,9} \lor p_{1,4,9} \lor p_{1,5,9} \lor p_{1,6,9} \lor p_{1,7,9} \lor p_{1,8,9} \lor p_{1,9,9} ) \big) \\
&\bigwedge \big(( p_{2,1,1} \lor p_{2,2,1} \lor p_{2,3,1} \lor p_{2,4,1} \lor p_{2,5,1} \lor p_{2,6,1} \lor p_{2,7,1} \lor p_{2,8,1} \lor p_{2,9,1} ) \\
&\land
(p_{2,1,2} \lor p_{2,2,2} \lor p_{2,3,2} \lor p_{2,4,2} \lor p_{2,5,2} \lor p_{2,6,2} \lor p_{2,7,2} \lor p_{2,8,2} \lor p_{2,9,2} ) \\
&\land (p_{2,1,3} \lor p_{2,2,3} \lor p_{2,3,3} \lor p_{2,4,3} \lor p_{2,5,3} \lor p_{2,6,3} \lor p_{2,7,3} \lor p_{2,8,3} \lor p_{2,9,3} ) \\
&\land
(p_{2,1,4} \lor p_{2,2,4} \lor p_{2,3,4} \lor p_{2,4,4} \lor p_{2,5,4} \lor p_{2,6,4} \lor p_{2,7,4} \lor p_{2,8,4} \lor p_{2,9,4} ) \\
&\land
(p_{2,1,5} \lor p_{2,2,5} \lor p_{2,3,5} \lor p_{2,4,5} \lor p_{2,5,5} \lor p_{2,6,5} \lor p_{2,7,5} \lor p_{2,8,5} \lor p_{2,9,5} ) \\
&\land (p_{2,1,6} \lor p_{2,2,6} \lor p_{2,3,6} \lor p_{2,4,6} \lor p_{2,5,6} \lor p_{2,6,6} \lor p_{2,7,6} \lor p_{2,8,6} \lor p_{2,9,6} ) \\
&\land (p_{2,1,7} \lor p_{2,2,7} \lor p_{2,3,7} \lor p_{2,4,7} \lor p_{2,5,7} \lor p_{2,6,7} \lor p_{2,7,7} \lor p_{2,8,7} \lor p_{2,9,7} ) \\
&\land (p_{2,1,8} \lor p_{2,2,8} \lor p_{2,3,8} \lor p_{2,4,8} \lor p_{2,5,8} \lor p_{2,6,8} \lor p_{2,7,8} \lor p_{2,8,8} \lor p_{2,9,8} ) \\
&\land (p_{2,1,9} \lor p_{2,2,9} \lor p_{2,3,9} \lor p_{2,4,9} \lor p_{2,5,9} \lor p_{2,6,9} \lor p_{2,7,9} \lor p_{2,8,9} \lor p_{2,9,9} ) \big) \\
&\bigwedge \dots \\
&\bigwedge \big(( p_{9,1,1} \lor p_{9,2,1} \lor p_{9,3,1} \lor p_{9,4,1} \lor p_{9,5,1} \lor p_{9,6,1} \lor p_{9,7,1} \lor p_{9,8,1} \lor p_{9,9,1} ) \\
&\land
(p_{9,1,2} \lor p_{9,2,2} \lor p_{9,3,2} \lor p_{9,4,2} \lor p_{9,5,2} \lor p_{9,6,2} \lor p_{9,7,2} \lor p_{9,8,2} \lor p_{9,9,2} ) \\
&\land (p_{9,1,3} \lor p_{9,2,3} \lor p_{9,3,3} \lor p_{9,4,3} \lor p_{9,5,3} \lor p_{9,6,3} \lor p_{9,7,3} \lor p_{9,8,3} \lor p_{9,9,3} ) \\
&\land
(p_{9,1,4} \lor p_{9,2,4} \lor p_{9,3,4} \lor p_{9,4,4} \lor p_{9,5,4} \lor p_{9,6,4} \lor p_{9,7,4} \lor p_{9,8,4} \lor p_{9,9,4} ) \\
&\land
(p_{9,1,5} \lor p_{9,2,5} \lor p_{9,3,5} \lor p_{9,4,5} \lor p_{9,5,5} \lor p_{9,6,5} \lor p_{9,7,5} \lor p_{9,8,5} \lor p_{9,9,5} ) \\
&\land (p_{9,1,6} \lor p_{9,2,6} \lor p_{9,3,6} \lor p_{9,4,6} \lor p_{9,5,6} \lor p_{9,6,6} \lor p_{9,7,6} \lor p_{9,8,6} \lor p_{9,9,6} ) \\
&\land (p_{9,1,7} \lor p_{9,2,7} \lor p_{9,3,7} \lor p_{9,4,7} \lor p_{9,5,7} \lor p_{9,6,7} \lor p_{9,7,7} \lor p_{9,8,7} \lor p_{9,9,7} ) \\
&\land (p_{9,1,8} \lor p_{9,2,8} \lor p_{9,3,8} \lor p_{9,4,8} \lor p_{9,5,8} \lor p_{9,6,8} \lor p_{9,7,8} \lor p_{9,8,8} \lor p_{9,9,8} ) \\
&\land (p_{9,1,9} \lor p_{9,2,9} \lor p_{9,3,9} \lor p_{9,4,9} \lor p_{9,5,9} \lor p_{9,6,9} \lor p_{9,7,9} \lor p_{9,8,9} \lor p_{9,9,9} ) \big)
\end{align}
Answer to question 2:
$
\bigvee_{i = 7}^{9} p_{i}
$ and $
p_{7}\vee p_{8}\vee p_{9}
$ are just two different notations for the same formula (they denote the same object). So, if your question refers to notations, $\bigvee_{i = 7}^{9} p_{i}$ is the compact or implicit notation and $p_{7}\vee p_{8}\vee p_{9}$ is the expanded or explicit notation for such a formula. But if your question refers to the (same) formula denoted by $\bigvee_{i = 7}^{9} p_{i}$ and $p_{7}\vee p_{8}\vee p_{9}$, such a formula is a (disjunctive) clause, i.e. a disjunction of literals, where a literal is an atomic formula or its negation. Since it is a disjunctive clause, such a formula is both a conjunctive normal form and a disjunctive normal form.
[]it will mean the same, right? Are they for just better visual separation of the parts? – vasili111 Sep 15 '18 at 11:52