I have encountered a simple problem in probability where I would not have expected to find conditional convergence lurking about, but there it is. So I wonder:
- Is any insight about probability to be drawn from the fact that infinity minus infinity appears here?
- In particular, do the two separate terms that evaluate to infinity have some probabilistic interpretation?
- Is any insight about analysis or anything else to be found here?
- Generally in what situations does one write $\displaystyle \int_{x\,:=\,0}^{x\,:=\,1} u\,dv = \Big[ uv \Big]_{x\,:=\,0}^{x\,:=\,1} - \int_{x\,:=\,0}^{x\,:=\,1} v\,du$ and find that those last two terms are both infinite even though the first one converges absolutely?
- In particular, are any instances of this particularly notable or worth knowing about?
The probability problem
Suppose $X_1,\ldots,X_6$ are independent random variables each having the same exponential distribution with expected value $\mu,$ so that $$ \Pr( X_1 > x) = e^{-x/\mu} \quad\text{for } x\ge0. $$ It is desired to find this expected value $$ \operatorname E(\max\{\,X_1,\ldots,X_6\,\}) = \mu\left( 1 + \frac 1 2 + \frac 13 + \frac 1 4 + \frac 1 5 + \frac 1 6 \right) = 2.45\mu. \tag 1 $$ One fairly routine way to show this goes like this: $$ \Pr(\min\{\,X_1,\ldots,X_6\,\} > x) = \big( \Pr(X_1>x) \big)^6 = e^{-6x/\mu}\quad \text{for }x\ge0, $$ and therefore $$ \operatorname E(\min) = \frac \mu 6. $$ Let $X_{(1)}, \ldots, X_{(6)}$ be the order statistics, i.e. $X_1,\ldots,X_6$ sorted into increasing order. Then we have $$ \operatorname E(X_{(1)}) = \frac \mu 6, \quad\text{and } \operatorname E(X_{(2)} - X_{(1)}) = \frac \mu 5 $$ because that difference is the minimum of five exponentially distributed random variables. And so on through the last one.
No conditional convergence appears above.
But suppose instead we just reduce it to evaluation of an integral.
\begin{align} & \Pr(\max \le x) = \Pr(X_{(6)} \le x) = \Pr( \text{all of }X_1,\ldots,X_6 \text{ are} \le x) = \left( 1 - e^{-x/\mu} \right)^6 \text{ for } x\ge0. \\[10pt] & \text{Hence for measurable sets $A\subseteq[0,+\infty)$ we have } \Pr(\max\in A) = \int_A f(x)\, dx \\[10pt] & \text{where } f(x) = \frac d {dx} \left( 1 - e^{-x/\mu} \right)^6 = 6\left( 1- e^{-x/\mu} \right)^5 ( e^{-x/\mu}) \frac 1 \mu. \end{align}
So here's our integral: $$ \operatorname E(\max) = \int_0^\infty xf(x)\, dx. $$ No suggestion of conditional convergence, right?
\begin{align} \operatorname E(\max) = \int_0^\infty xf(x)\, dx & = \int_0^\infty x 6\left( 1- e^{-x/\mu} \right)^5 ( e^{-x/\mu}) \, \frac {dx} \mu \\[10pt] & = \mu \int_0^\infty s 6( 1-e^{-s})^5 e^{-s} \, ds \\[10pt] & = \mu \int s\, dt = \mu st - \mu\int t\,ds \\[10pt] & = \mu s(1-e^{-s})^6 - \mu \int (1-e^{-s})^6 \, ds. \end{align} Now a substitution: \begin{align} r & = 1-e^{-s} \\[6pt] s & = -\log(1-r) \\[6pt] ds & = \frac{dr}{1-r} \end{align} Our integral becomes \begin{align} & \mu ( - r^6 \log(1-r) ) - \mu \int \frac{r^6}{1-r} \, dr \\[10pt] = {} & \mu ( - r^6 \log(1-r) ) - \mu \int \left( -r^5 - r^4 - r^3 - r^2 - r - 1 + \frac 1 {1-r} \right) \, dr \end{align} Now the temptation is to write $$ \require{cancel} \xcancel{\left[ \mu \left( -r^6 \log_e(1-r) \right) \vphantom{\frac11} \right]_0^1} - \xcancel{\mu \int_0^1 \left( -r^5-r^4-r^3-r^2 - r -1 + \frac 1 {1-r} \right) \, dr }. $$ The problem is that this is infinity minus infinity, so we have conditional convergence. So suppose we write it like this: \begin{align} & \left[ \mu \left( -r^6 \log(1-r) \right) - \mu \int \left( -r^5-r^4-r^3-r^2 - r -1 + \frac 1 {1-r} \right) \, dr \right]_0^1 \\ & \text{(The above is not standard notation, as far as I know.)} \\[10pt] = {} & \mu \left[ (1-r^6) \log_e (1-r) + \left( \frac{r^6} 6 + \frac{r^5} 5 + \frac{r^4} 4 + \frac {r^3} 3 + \frac{r^2} 2 + r \right) \right]_0^1 \end{align} After we use L'Hopital's rule to evaluate the first term, this ends up being just what we see in $(1).$
Maybe I'll post my own answer if I am so inspired, but other answers may provide valuable alternative points of view. (I don't have an answer to post yet.)
Postscript:
Where I've seen something similar before is in attempts to prove that if $\Pr(X\ge0) = 1$ and $f$ is the p.d.f. and $F$ the c.d.f. of $X$, then
$$ \int_0^\infty xf(x)\, dx = \int_0^\infty (1-F(x))\,dx. $$
If you write
$$ \int(1-F(x))\,dx = \int u\,dx = xu - \int x\, du = \text{etc.,} $$
then you get infinity minus infinity. But you can do this:
\begin{align} & \int_0^\infty xf(x)\, dx = \int_0^\infty \left( \int_0^x f(x)\,dy \right) \, dx \\[10pt] = {} & \int_0^\infty \left( \int_y^\infty f(x) \,dx\right) \, dy \\[10pt] = {} & \int_0^\infty (1-F(y))\,dy. \end{align}
Tonelli's theorem is applicable since the function being integrated is everywhere non-negative, so that justifies the change in the order of integration.