$\color{brown}{\mathbf{\text{Reformulation of the problem.}}}$
At first, let us try to find any solution, using substitutions
$$y=\sqrt{a+x},\quad z=\sqrt{a-x},\tag1$$
then
$$x=y^2-a=a-z^2,\quad a \ge 0,\quad x\ge 0,\tag2$$
\begin{cases}
\sqrt{a-y}+\sqrt{a+z} = y^2-z^2\\
y^2+z^2=2a\\
0\le z\le \sqrt a \le y,\tag3
\end{cases}
Let
$$u=\sqrt{a-y}=\sqrt{a-\sqrt{a+x}},\quad v=\sqrt{a+z} = \sqrt{a+\sqrt{a-x}},\tag4$$
then
$$y=a-u^2,\quad z=v^2-a,\quad x=(a-u^2)^2-a=a-(v^2-a)^2,\tag5$$
\begin{cases}
u+v=(a-u^2)^2-(v^2-a)^2\\
(a-u^2)^2+(v^2-a)^2=2a\\
0\le v^2-a\le \sqrt a\le a-u^2\\
0\le u\le \sqrt a\le v,
\end{cases}
or
\begin{cases}
u+v=(v^2-u^2)(2a-u^2-v^2)\\
u^4+v^4 -2a(u^2+v^2+1)+2a^2=0\\
0\le u\le\sqrt{a-\sqrt a}\\
\sqrt a\le v \le \sqrt{a+\sqrt a}.
\end{cases}
Solution $\mathbf{u+v=0}\ $ exists only if $\mathbf{a=0\Rightarrow x=0}.$
Solution $\mathbf{u+v\not=0}\ $ exists only if $\mathbf{a\ge1}$ and can be obtained from the system
\begin{cases}
(v-u)(2a-u^2-v^2)=1\\
2(u^4+v^4) - 4a(u^2+v^2+1) + 4a^2=0\\
0\le u\le\sqrt{a-\sqrt a}\\
\sqrt a\le v \le \sqrt{a+\sqrt a}.\tag6
\end{cases}
wherein $\mathbf{u < v}.$
Taking in account the identity
$$(2a-u^2-v^2)^2 = 4a^2 - 4a(u^2+v^2) + u^4 + v^4 + 2u^2v^2,$$
one can get the system
\begin{cases}
(v-u)(2a-u^2-v^2)=1\\
(2a-u^2-v^2)^2 + (u^2-v^2)^2 - 4a = 0\\
0\le u\le\sqrt{a-\sqrt a}\\
\sqrt a\le v \le \sqrt{a+\sqrt a},
\end{cases}
or
\begin{cases}
(v-u)(2a-u^2-v^2)=1\\
(v-u)^2((u^2-v^2)^2 - 4a) + 1=0\\
0\le u\le\sqrt{a-\sqrt a}\\
\sqrt a\le v \le \sqrt{a+\sqrt a}.\tag7
\end{cases}
Then
\begin{align}
&(u^2-v^2)^2= (v-u)^2(u+v)^2= (v-u)^2\biggl(2(u^2+v^2)-(v-u)^2\biggr)\\
&=(v-u)^2\biggl(2\left(2a-\dfrac1{v-u}\right)-(v-u)^2\biggr)\\
&=-(v-u)^4+4a(v-u)^2 - 2(v-u),\\
\end{align}
\begin{cases}
(v-u)^6-4a(v-u)^4 + 2(v-u)^3 + 4a(v-u)^2 - 1=0\\
u^2+v^2=2a - \dfrac1{v-u}\\
0\le u\le\sqrt{a-\sqrt a}\\
\sqrt a\le v \le \sqrt{a+\sqrt a}.\tag8
\end{cases}
$\color{brown}{\mathbf{\text{Getting of the possible solutions.}}}$
Formulas $(8)$ allow to get values $v-u = s$ and $u^2+v^2=2a-\dfrac1s$ by the given $a.$
The equation
$$s^6 - 4as^4 + 2s^3 + 4as^2 - 1 = 0\tag9$$
can be solved, using the form of
$$s^3 - \dfrac1{s^3} - 4a\left(s-\dfrac1s\right) + 2 = 0,$$
or
$$4t^3+(3-4a)t-1 = 0,\tag{10}$$
where
$$t=\dfrac12\left(\dfrac1s - s\right).$$
This gives the simple real solution
$$t = \dfrac12\left(\sqrt[3]{\sqrt{1+\left(1-\dfrac43a\right)^3}+1} +
\dfrac{\dfrac43a-1}{\sqrt[3]{\sqrt{1+\left(1-\dfrac43a\right)^3}+1}}\right),\quad \mathbf{a\le\dfrac32}. \tag{11}$$
If $\mathbf{a>\dfrac32},$ then, using Chebyshev Polynomial of the First Kind,
\begin{align}
&4\left(\dfrac t{\sqrt{\dfrac43a-1}}\right)^3 - 3\left(\dfrac t{\sqrt{\dfrac43a-1}}\right) = \dfrac 1{\left(\sqrt{\dfrac43a-1}\right)^3},\\
\end{align}
\begin{align}
&\cos\left(3\arccos\left(\dfrac t{\sqrt{\dfrac43a-1}}\right)\right) = \dfrac 1{\left(\sqrt{\dfrac43a-1}\right)^3},
\end{align}
$$t = \sqrt{\dfrac43a-1}\cos\left(\dfrac{2k}3\pi
+ \dfrac13\arccos\dfrac1{\left(\sqrt{\dfrac43a-1}\right)^3}\right),
\quad \mathbf{a>\dfrac32},\tag{12}$$
where $k=0,1,2$ is the branch number.
That leads to the system
$$\begin{cases}
v - u = \sqrt{t^2+1}-t\\
u^2 + v^2 = 2a - \sqrt{t^2+1} - t.
\end{cases}\tag{13}$$
At the same time,
$$x=\dfrac{u+v}2 = \dfrac12\sqrt{2(u^2+v^2)-(v-u)^2}.$$
Therefore,
$$x = \dfrac12\sqrt{4a-2\sqrt{t^2+1}-2t-(\sqrt{t^2+1}-t)^2},\tag{14}$$
where $t$ is given by $(11),(12).$
$\color{brown}{\mathbf{\text{Solutions analysis.}}}$
Note that
\begin{align}
&\sqrt{a\mp x}=\sqrt a\sqrt{1\mp\dfrac xa}\ge \sqrt a\left(1\mp\dfrac x{2a}\right) = \sqrt a\mp\dfrac x{2\sqrt a}, \\[4pt]
&\sqrt{a\pm\sqrt{a\mp x}} \ge \sqrt{a\pm\sqrt a - \dfrac x{2\sqrt a}} = \sqrt{a\pm\sqrt a}\sqrt{1-\dfrac x{2\sqrt a\left(a\pm\sqrt a\right)}}\\[4pt]
&\ge \sqrt{a\pm\sqrt a}\left(1-\dfrac x{4\sqrt a\left(a\pm\sqrt a\right)}\right) = \sqrt{a\pm\sqrt a}-\dfrac x{4\sqrt a\sqrt{a\pm\sqrt a}},\\
&\sqrt{a+\sqrt{a-x}}+\sqrt{a-\sqrt{a+x}} \ge \sqrt{a+\sqrt a}+\sqrt{a-\sqrt a} - \dfrac x{4\sqrt a\sqrt{a-\sqrt a}\sqrt{a+\sqrt a}}\left(\sqrt{a+\sqrt a}+\sqrt{a-\sqrt a}\right) = \sqrt{2\left(a+\sqrt{a-a^2}\right)}\left(1-\dfrac x{4a\sqrt{a-1}}\right),\\
\end{align}
$$\sqrt{a+\sqrt{a-x}}+\sqrt{a-\sqrt{a+x}} \ge \sqrt{2\left(a+\sqrt{a-a^2}\right)}\left(1-\dfrac x{4a\sqrt{a-1}}\right),\tag{15}$$
so the real solutions of the issue equation can exist only if
$$1-\dfrac x{4a\sqrt{a-1}} \le\dfrac {2x}{\sqrt{2\left(a+\sqrt{a-a^2}\right)}}=\dfrac{\sqrt{2(a-\sqrt{a^2-a})}}{\sqrt a}x ,$$
or only in the case
$$x\ge B(a),\quad B(a)=\dfrac{4a\sqrt{a-1}}{1+4\sqrt{2(a^2-a)(a-\sqrt{a-a^2})}}\tag{16}$$
(see also Wolfram Alpha)

This means that solutions with $\mathbf{a<1}$ doesn't exist.
If $\mathbf{a\in\left[1,\dfrac32\right]},$ then solutions also doesn't exist.
In particular, for $a=\dfrac32\quad B(a)>0.86.$ On the other hand, equation $(10)$ takes form of
$$t^3-3t-1=0, \quad (t-1)(2t+1)^2=0,\quad t \in\{-1/2, 1\},\quad x \in\{\approx 0.732, 1/2\},$$
and this contradicts with $(16).$
Let us consider the case $\mathbf{a>\dfrac32}.$
If $\mathbf{k=0}$ (zero branch), then formula $(12)$ means that
$$t\ge \sqrt{\dfrac43a-1}\dfrac{\sqrt3}2 = \sqrt{a-\dfrac34},$$
and one can check that $x(a)< B(a)$ (see also Wolfram Alpha).
If $\mathbf{k=1}$ (the first branch), then, using $(12),$
$$t\le -\sqrt{\dfrac43a-1}\dfrac{\sqrt3}2 = -\sqrt{a-\dfrac34},$$
and $x(a)<B(a)$ again (see also Wolfram Alpha).
If $\mathbf{k=2}$ (the second branch), then verification, using MathCad, leads to the positive result.

Therefore, all solutions $x$ of the issue equation can be defined by formula $(14),$ where
$$t=-\sqrt{\dfrac{4a-3}3}\sin\left(\dfrac13\arcsin\dfrac{3\sqrt3}{(4a-3)\sqrt{4a-3}}\right).\tag{17}$$
Gratitude to GCab to the solution example.