Let $F$ be a field. The ring of Laurent series is defines as: $$F((t))=\left\{\sum\limits_{n=N}^{\infty}a_nt^n\ :\ N\in\mathbb Z, a_n\in F\right\}$$ I am trying to show that it is actually a field.
So if $a=\sum\limits_{n=N}^{\infty}a_nt^n\in F((t))$ we can split $a$ into two parts: $$a=\sum\limits_{n=N}^{-1}a_nt^n+\sum\limits_{n=0}^{\infty}a_nt^n$$ (if $N\geq0$ then there is no problem as $a_0+a_1t+...+a_nt^n$ is a unit in $F[[t]]=\left\{\sum\limits_{n=0}^{\infty}a_nt^n\right\}$ since $a_0$ is a unit in $F$ we can find the inverse of $a$: $$a^{-1}=a_0^{-1}+b_1t+b_2t^2+\ \ldots$$ where $ b_n := -a_0^{-1} \sum_{k=1}^n a_k b_{n-k} $
Starting from scratch, can I write $F((t))=F[t,{1\over t}]$ ? And then since $t$ and $1/t$ are units in $F[t,{1\over t}]$ $F((t))$ is a field?