You don't even need positive definiteness (or semi-, negative-, etc. definitiveness for that matter)
The only thing you need is
$$
x^*Ax \in \mathbb R \qquad \forall x \in \mathbb C^n
$$ which is true of course when we compare this value with $0$ while defining such matrices.
Proof: Let $x^*A x\in \mathbb R$ for all $x\in \mathbb C^n$ (and NOT just $\mathbb R^n$)
First we show $A$ is hermitian, let $x\in \mathbb C^n$, then
$$
x^*Ax= \langle Ax,x\rangle=\langle x,A^*x\rangle = \overline{\langle A^*x,x\rangle} = \langle A^*x,x \rangle
$$
We therefore have $
\langle (A-A^*)x,x\rangle = 0
$ for all $x\in \mathbb C^n$. $A$ being hermetian, i.e. $A=A^*$ then follows from the following claim.
Claim: if $\langle Bx,x\rangle = 0$ for all $x\in \mathbb C^n$, then $B=0$
Proof: For arbitrary $y\in \mathbb C^n$ and $k\in \mathbb C$ we have
$$
\langle B(x+ky), x+ky\rangle = \bar{k}\langle Bx,y \rangle + k\langle By,x \rangle.
$$
Now set $k=1$ and $k=\iota$ to get two equations, solve them to get $$
\langle Bx,y\rangle =0 \quad \forall y\in \mathbb C^n.
$$
Thus we have $Bx= 0$ for all $x\in \mathbb C^n$ and therefore $B=0$.