To be clear, the heart of the question is the following assertion:
$$\text{positive definite} + \text{complex field} \implies \text{Hermitian}.$$
The key idea here is to do a complex variation on the classic symmetric + skew-symmetric splitting. That is,
$$A = \frac{A + A^*}{2} + i \frac{A - A^*}{2i}.$$
Since $\frac{1}{i} = -i$, we have,
$$\frac{A - A^*}{2i}~ \text{is Hermitian!}$$
In a sense this splitting is a matrix analog of splitting a complex number into it's real and imaginary parts.
Now since $A$ is positive definite we have,
$$0 \le \langle z, A z \rangle = \underbrace{\langle z, \frac{A + A^*}{2} z \rangle}_{\text{real}} + i ~ \underbrace{\langle z, \frac{A - A^*}{2i} z \rangle}_{\text{real}}.$$
The only way this whole quantity can be real for all $z$ is if
$$\frac{A - A^*}{2i} = 0.$$
In other words, $A = A^*$, so $A$ is Hermitian.
It is interesting to note that this result does NOT hold when restricted to the real field, as can be seen with the following counterexample:
$$M = \begin{bmatrix}1 & 2 \\ & 1\end{bmatrix}.$$
For real $x,y$, we have,
$$\begin{bmatrix}x & y\end{bmatrix}\begin{bmatrix}1 & 2 \\ & 1\end{bmatrix}\begin{bmatrix}x \\ y\end{bmatrix} = (x+y)^2 \ge 0,$$
so $M$ is real-positive-definite.
On the other hand, $M$ is not complex-positive-definite since we can take $x=i$, $y=1$ to get,
$$\begin{bmatrix}-i & 1\end{bmatrix}\begin{bmatrix}1 & 2 \\ & 1\end{bmatrix}\begin{bmatrix}i \\ 1\end{bmatrix} = 2 - 2i \notin \mathbb{R}.$$