I have a Quadratic Diophantine equation.
I am sorry I didn't get how to show correctly. So I used a picture
How can I find all integer solutions? Should I do something with Z(14)?
The integer equation $11 x^2 - 14 y^2 = 1$ is impossible. However, I do not see that a proof is available for a beginner. There is no simple proof with congruences. There is one using, in effect, continued fractions.
The principal genus of this discriminant is two forms, $$ x^2 - 154 y^2 $$ $$ 2 x^2 - 77 y^2, $$ and your form $11x^2 - 14 y^2$ is $SL_2 \mathbb Z$ equivalent to $2x^2 - 77 y^2$ and simply does not integrally represent $1.$
The other genus is their negatives, $$ -x^2 + 154 y^2 $$ $$ -2 x^2 + 77 y^2, $$
Here are a list of the class group, Gauss-Lagrange reduced forms, and the Lagrange cycle of your form
1. 1 24 -10 cycle length 10
2. -1 24 10 cycle length 10
3. 2 24 -5 cycle length 8
4. -2 24 5 cycle length 8
form class number is 4
jagy@phobeusjunior:~/old drive/home/jagy/Cplusplus$ ./indefCycle 11 0 -14
0 form 11 0 -14 delta 0
1 form -14 0 11 delta 1
2 form 11 22 -3
-1 -1
0 -1
To Return
-1 1
0 -1
0 form 11 22 -3 delta -7 ambiguous
1 form -3 20 18 delta 1
2 form 18 16 -5 delta -4
3 form -5 24 2 delta 12
4 form 2 24 -5 delta -4 ambiguous
5 form -5 16 18 delta 1
6 form 18 20 -3 delta -7
7 form -3 22 11 delta 2
8 form 11 22 -3
form 11 x^2 + 22 x y -3 y^2
minimum was 2rep x = 5 y = 39 disc 616 dSqrt 24 M_Ratio 4.760331
Automorph, written on right of Gram matrix:
2419 5148
18876 40171
=========================================
jagy@phobeusjunior:~/old drive/home/jagy/Cplusplus$
Second answer: your problem is equivalent to showing, with integers $x,y,$ that $$ x^2 - 154 y^2 \neq 2 $$ This may be more familiar, it is a matter of constructing the continued fraction for $\sqrt {154}$ and showing that, for any "convergent" $\frac{p}{q},$ we always have $p^2 - 154 q^2 \neq 2.$
Method described by Prof. Lubin at Continued fraction of $\sqrt{67} - 4$
$$ \sqrt { 154} = 12 + \frac{ \sqrt {154} - 12 }{ 1 } $$ $$ \frac{ 1 }{ \sqrt {154} - 12 } = \frac{ \sqrt {154} + 12 }{10 } = 2 + \frac{ \sqrt {154} - 8 }{10 } $$ $$ \frac{ 10 }{ \sqrt {154} - 8 } = \frac{ \sqrt {154} + 8 }{9 } = 2 + \frac{ \sqrt {154} - 10 }{9 } $$ $$ \frac{ 9 }{ \sqrt {154} - 10 } = \frac{ \sqrt {154} + 10 }{6 } = 3 + \frac{ \sqrt {154} - 8 }{6 } $$ $$ \frac{ 6 }{ \sqrt {154} - 8 } = \frac{ \sqrt {154} + 8 }{15 } = 1 + \frac{ \sqrt {154} - 7 }{15 } $$ $$ \frac{ 15 }{ \sqrt {154} - 7 } = \frac{ \sqrt {154} + 7 }{7 } = 2 + \frac{ \sqrt {154} - 7 }{7 } $$ $$ \frac{ 7 }{ \sqrt {154} - 7 } = \frac{ \sqrt {154} + 7 }{15 } = 1 + \frac{ \sqrt {154} - 8 }{15 } $$ $$ \frac{ 15 }{ \sqrt {154} - 8 } = \frac{ \sqrt {154} + 8 }{6 } = 3 + \frac{ \sqrt {154} - 10 }{6 } $$ $$ \frac{ 6 }{ \sqrt {154} - 10 } = \frac{ \sqrt {154} + 10 }{9 } = 2 + \frac{ \sqrt {154} - 8 }{9 } $$ $$ \frac{ 9 }{ \sqrt {154} - 8 } = \frac{ \sqrt {154} + 8 }{10 } = 2 + \frac{ \sqrt {154} - 12 }{10 } $$ $$ \frac{ 10 }{ \sqrt {154} - 12 } = \frac{ \sqrt {154} + 12 }{1 } = 24 + \frac{ \sqrt {154} - 12 }{1 } $$
Simple continued fraction tableau:
$$
\begin{array}{cccccccccccccccccccccccccc}
& & 12 & & 2 & & 2 & & 3 & & 1 & & 2 & & 1 & & 3 & & 2 & & 2 & & 24 & \\
\\
\frac{ 0 }{ 1 } & \frac{ 1 }{ 0 } & & \frac{ 12 }{ 1 } & & \frac{ 25 }{ 2 } & & \frac{ 62 }{ 5 } & & \frac{ 211 }{ 17 } & & \frac{ 273 }{ 22 } & & \frac{ 757 }{ 61 } & & \frac{ 1030 }{ 83 } & & \frac{ 3847 }{ 310 } & & \frac{ 8724 }{ 703 } & & \frac{ 21295 }{ 1716 } \\
\\
& 1 & & -10 & & 9 & & -6 & & 15 & & -7 & & 15 & & -6 & & 9 & & -10 & & 1
\end{array}
$$
$$ \begin{array}{cccc} \frac{ 1 }{ 0 } & 1^2 - 154 \cdot 0^2 = 1 & \mbox{digit} & 12 \\ \frac{ 12 }{ 1 } & 12^2 - 154 \cdot 1^2 = -10 & \mbox{digit} & 2 \\ \frac{ 25 }{ 2 } & 25^2 - 154 \cdot 2^2 = 9 & \mbox{digit} & 2 \\ \frac{ 62 }{ 5 } & 62^2 - 154 \cdot 5^2 = -6 & \mbox{digit} & 3 \\ \frac{ 211 }{ 17 } & 211^2 - 154 \cdot 17^2 = 15 & \mbox{digit} & 1 \\ \frac{ 273 }{ 22 } & 273^2 - 154 \cdot 22^2 = -7 & \mbox{digit} & 2 \\ \frac{ 757 }{ 61 } & 757^2 - 154 \cdot 61^2 = 15 & \mbox{digit} & 1 \\ \frac{ 1030 }{ 83 } & 1030^2 - 154 \cdot 83^2 = -6 & \mbox{digit} & 3 \\ \frac{ 3847 }{ 310 } & 3847^2 - 154 \cdot 310^2 = 9 & \mbox{digit} & 2 \\ \frac{ 8724 }{ 703 } & 8724^2 - 154 \cdot 703^2 = -10 & \mbox{digit} & 2 \\ \frac{ 21295 }{ 1716 } & 21295^2 - 154 \cdot 1716^2 = 1 & \mbox{digit} & 24 \\ \end{array} $$
If you are asking for $(x, y)$ pairs that solve the equation: $$11x^2-14y^2=1$$ you can use the on solver at here to show that there are no solutions in integers.