Show that there is at least a nonzero function $f$, differentiable on $[0,+\infty)$, satisfying $$f'(x)=2f(2x)-f(x) \qquad \forall x>0 $$ $$M_n:=\int_{0}^{\infty}x^nf(x)dx<\infty \qquad \forall n\in \mathbb{N} $$
My best idea so far is to assume that the solution is a power series, i.e. $$ f(x)=\sum_{n=0}^{\infty}a_nx^n\qquad \forall x>0$$ Then the equation becomes $$ \sum_{n=0}^{\infty}na_nx^{n-1}=2\sum_{n=0}^{\infty}a_n2^nx^n-\sum_{n=0}^{\infty}a_nx^n$$ equating all the coefficients of the same degree I get $$na_n=(2^{n}-1)a_{n-1}\qquad \forall n\geq 1$$ So setting $a_0=1$, I get $$a_{n}=\frac{1}{n!}\prod_{k=1}^{n}(2^k-1) \qquad \forall n$$ But does the power series actually converge? Using Hadamard's formula, and that $2^{k}-1\geq 2^{k-1}$, $$ |a_n|^{1/n}\geq\frac{1}{(n!)^{1/n}}\left[2^{n(n-1)/2}\right]^{1/n}\sim\frac{e}{n(2\pi n)^{1/2n}}2^{(n-1)/2}\to \infty$$ so the radius of converge of the series is $0$, so it doesn't actually define a solution on $[0,+\infty)$.