Let $\mathcal{C}$ be the circle $|z + 2| = 3$ described in the anti-clockwise (i.e. positive) sense in the complex plane. Evaluate:
$\int_{\mathcal{C}}\frac{1}{z^3(z+4)}dz$
I tried to find the partial fraction of
$\frac{1}{z^3(z+4)}=\frac{A}{z}+\frac{B}{z^2}+\frac{C}{z^3}+\frac{D}{(z+4)}$.
I got the expression
$\int_{\mathcal{C}}\frac{1}{z^3(z+4)}dz=\int_{\mathcal{C}}\frac{\frac{1}{64}}{z}+\frac{-\frac{1}{16}}{z^2}+\frac{\frac{1}{4}}{z^3}+\frac{-\frac{1}{64}}{(z+4)}dz=2\pi i\{\frac{1}{64}-\frac{1}{64}\}=0$.
Without the help of partial fraction can I able to solve the problem in less time?. Please suggest me alternative methods.
Here singularities inside the circle. How to evaluate the integral, if the singularities lies on the sircle? Please provide examples