Here $P$ is probability. I can do this for $A_n \uparrow A$ by using $\sigma$-additivity:
$$B_n = A_n - A_{n-1}$$
$$P(A) = P\left(\bigcup_{n=1}^{\infty} A_n\right) = P\left(\bigcup_{n=1}^{\infty} B_n\right)$$
$$P(A) = P\left(\lim_{n\to \infty } \bigcup_{i=1}^{n} B_n\right) = \lim_{n\to \infty } \sum_{i=1}^{n} P(B_n)$$
$$\lim_{n\to \infty } \sum_{i=1}^{n} P(B_n) = \lim_{n\to \infty }P(A_n)$$
But this relies on the fact that $\bigcup_{i=1}^n B_i = \bigcup_{i=1}^n A_i$, which I can't assume if $A_n$ does not monotonically converge to $A$. What should I do?