Let $\mu$ finite measure then $A_n\rightarrow A\implies \mu(A_n)\rightarrow \mu(A)$.
My Attempt:
$$ \mu(A)=\mu(\lim_{n\rightarrow\infty}\sup A_n) =\mu\left(\lim_{n\rightarrow\infty}\bigcup^\infty_{k=n} A_k\right) =\lim_{n\rightarrow\infty}\mu\left(\bigcup^\infty_{k=n} A_k\right) =\lim_{n\rightarrow\infty}\sum^\infty_{k=n} \mu(A_k) =\lim_{n\rightarrow\infty} \mu(A_n) $$
Is this correct?