$$\| \mathrm A - \mathrm x \mathrm b^{\top} \|_{\text{F}}^2 = \cdots = \| \mathrm b \|_2^2 \, \| \mathrm x \|_2^2 - \langle \mathrm A \mathrm b , \mathrm x \rangle - \langle \mathrm x , \mathrm A \mathrm b \rangle + \| \mathrm A \|_{\text{F}}^2$$
Taking the gradient of this cost function,
$$\nabla_{\mathrm x} \| \mathrm A - \mathrm x \mathrm b^{\top} \|_{\text{F}}^2 = 2 \, \| \mathrm b \|_2^2 \, \mathrm x - 2 \mathrm A \mathrm b$$
which vanishes at the minimizer
$$\mathrm x_{\min} := \color{blue}{\frac{1}{\| \mathrm b \|_2^2} \mathrm A \mathrm b}$$
Note that
$$\mathrm A - \mathrm x_{\min} \mathrm b^{\top} = \mathrm A - \mathrm A \left( \frac{ \,\,\,\mathrm b \mathrm b^{\top} }{ \mathrm b^\top \mathrm b } \right) = \mathrm A \left( \mathrm I_n - \frac{ \,\,\,\mathrm b \mathrm b^{\top} }{ \mathrm b^\top \mathrm b } \right)$$
where
$\frac{ \,\,\,\mathrm b \mathrm b^{\top} }{ \mathrm b^\top \mathrm b }$ is the projection matrix that projects onto the line spanned by $\mathrm b$, which we denote by $\mathcal L$.
$\left( \mathrm I_n - \frac{ \,\,\,\mathrm b \mathrm b^{\top} }{ \mathrm b^\top \mathrm b } \right)$ is the projection matrix that projects onto the orthogonal complement of line $\mathcal L$.
Hence, the minimum is
$$\| \mathrm A - \mathrm x_{\min} \mathrm b^{\top} \|_{\text{F}}^2 = \left\| \mathrm A \left( \mathrm I_n - \frac{ \,\,\,\mathrm b \mathrm b^{\top} }{ \mathrm b^\top \mathrm b } \right) \right\|_{\text{F}}^2 = \color{blue}{\left\| \left( \mathrm I_n - \frac{ \,\,\,\mathrm b \mathrm b^{\top} }{ \mathrm b^\top \mathrm b } \right) \mathrm A^\top \right\|_{\text{F}}^2}$$
which is the sum of the squared $2$-norms of the projections of the rows of $\rm A$ (i.e., the columns of $\rm A^\top$) onto the orthogonal complement of line $\mathcal L$.
matrices rank-1-matrices