$$\begin{align} e^{2 \pi i } &= 1 \\ e^{1 + 2 \pi i} &= e \\ e^{1 - 2 \pi i} &= e \\ {(e^{1 - 2 \pi i})}^{1 + 2 \pi i} &= e^{1 + 2 \pi i}=e\\ e^{1+4 \pi^2} &= e\\ e^{4 \pi^2} &= 1 \\ \pi &= 0 \end{align}$$
Where is an error?
$$\begin{align} e^{2 \pi i } &= 1 \\ e^{1 + 2 \pi i} &= e \\ e^{1 - 2 \pi i} &= e \\ {(e^{1 - 2 \pi i})}^{1 + 2 \pi i} &= e^{1 + 2 \pi i}=e\\ e^{1+4 \pi^2} &= e\\ e^{4 \pi^2} &= 1 \\ \pi &= 0 \end{align}$$
Where is an error?
There are actually three mistakes in the proof:
No 1:
$$ e^{1 - 2 \pi i} = e \Rightarrow {(e^{1 - 2 \pi i})}^{1 + 2 \pi i} = e^{1 + 2 \pi i}$$
In the second equation, the LHS is a multi-valued function, while the RHS is a complex number.
No 2:
$$ e^{4 \pi^2} = 1 \Rightarrow \pi = 0 $$
As complex function, the exponential is NOT one to one.
No 3
Also note that the laws of exponentiation don't hold for complex exponentials, one should not use $${(e^{1 - 2 \pi i})}^{1 + 2 \pi i}= e^{(1 - 2 \pi i) (1 + 2 \pi i)}$$