$\newcommand{\P}{\operatorname{P}}$I'm wondering if this sum of prime numbers converges and how can I estimate the value of convergence.
$$\sum_{k=1}^\infty \frac{\P[k+1]-2\P[k+2]+\P[k+3]}{\P[k]-\P[k+1]+\P[k+2]}$$
$ \ $
\begin{align} \sum_{k=1}^{10} \frac{\P[k+1]\cdots}{\P[k]\cdots} & = 0.4380952380952381` \\ & \,\,\, \vdots \\ \sum_{k=1}^{10^5} \frac{\P[k+1]\cdots}{\P[k]\cdots} & =0.49433323447491884` \\[10pt] \sum_{k=1}^{10^6} \frac{\P[k+1]\cdots}{\P[k]\cdots} & = 0.49433634247938607`\ \approx \frac{5}{7}\zeta(3)^{-2} \end{align}
$\ $
$ \zeta(s) \ $ is the Reimann zeta function
P$[n] \ $ is the $n^\text{th}$ prime number
This is enough to assert that the series converges?
How can I estimate the value of convergence and if it is rational or irrational?
