1

Let $0\leq B_{ij}\leq 1$. Is it true that $$\sum_i x_i^2 +\sum_i\sum_{i\neq j}B_{ij}x_i x_j \geq 0$$ for $x\in\mathbb{R}^n$? In other words, is the matrix $I+B$ (with $B_{ii}=0$) positive semidefinite?

It is true when $B_{ij}=1$ for $i\neq j$, since $$ \left(\sum_i x_i\right)^2=\sum_i x_i^2 +\sum_i\sum_{i\neq j}x_i x_j \geq 0 $$ but I would like to have a more general result.

user_lambda
  • 1,452

1 Answers1

1

No. $$ B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0\\ 1 & 0 & 0 \end{bmatrix}\\ x = \begin{bmatrix} 1\\ -1\\ -1 \end{bmatrix} $$ Then $x^t (I+B) x = -1$, if I've calculated correctly.

John Hughes
  • 100,827
  • 4
  • 86
  • 159