After some time I came across a few more examples to add to the list.
The logarithmic spiral,
$$
\alpha(t) = (e^t\cos t, e^t\sin t)
$$
which has $\|\alpha'(t)\|=\sqrt{2}\,e^t$ and so has arc length
$$
s = \int_0^t \|\alpha'(u)\|\,\mathrm{d}u =\int_0^t \sqrt{2}\,e^u \,\mathrm{d}u = \sqrt{2}\,(e^t-1)
$$
and so $t=\ln\left(\frac{s}{\sqrt{2}}+1\right)$ which let's us reparametrize the curve as
$$
\tilde\alpha(s)=\left( \left(\frac{s}{\sqrt{2}}+1\right)\cos\left(\ln\left(\frac{s}{\sqrt{2}}+1\right)\right), \left(\frac{s}{\sqrt{2}}+1\right)\sin\left(\ln\left(\frac{s}{\sqrt{2}}+1\right) \right)\right)
$$
The helix,
$$
\beta(t) = (a\cos t, a\sin t, bt)
$$
which has $\|\beta'(t)\| = \sqrt{a^2+b^2}$ and so has arc length
$$
s = \int_0^t \|\beta'(u)\|\,\mathrm{d}u\int_0^t \sqrt{a^2+b^2}\,\mathrm{d}u = t\sqrt{a^2+b^2}
$$
and so $t=\frac{s}{\sqrt{a^2+b^2}}$ which let's us reparametrize the curve as
$$
\tilde{\beta}(s) = \left( a\cos\left(\frac{s}{\sqrt{a^2+b^2}}\right), a\sin\left(\frac{s}{\sqrt{a^2+b^2}}\right), \frac{bs}{\sqrt{a^2+b^2}}\right)
$$
A helix-like curve inside in a flat torus,
$$
\gamma(t) = (a\cos At, a\sin At, b\cos Bt, b\sin Bt)
$$
which has $\|\gamma'(t)\|=\sqrt{a^2A^2+b^2B^2}$ and so has arc length
$$
s = \int_0^t \|\gamma'(u)\|\,\mathrm{d}u\int_0^t \sqrt{a^2A^2+b^2B^2}\,\mathrm{d}u = t\sqrt{a^2A^2+b^2B^2}
$$
and so $t=\frac{s}{C}$ where $C = \sqrt{a^2A^2+b^2B^2}$. This let's us reparametrize the curve as
$$
\tilde\gamma(s)=\left( a\cos\frac{As}{C}, a\sin\frac{As}{C},b\cos\frac{Bs}{C},b\sin\frac{Bs}{C}\right)
$$