2

There is a circle of radius R, and 2 chords intersect perpendicularly inside the circle. The distance from the center of the circle to each chord is known (h and w).

Looking for derivations of 3 individual expressions A(R,h,w) for areas of the 3 numbered regions in the circle shown below.

Circle Regions

1 Answers1

0

The individual expressions are quite complicated to type out expicitly in mathjax, but can be deduced from the following, using the standard result for the area of a segment:

Firstly, $$A_1+A_2=\frac 12R^2(2\theta-\sin2\theta)$$ where $\cos\theta=\frac wR$ so $\sin2\theta=2\frac{w\sqrt{R^2-w^2}}{R^2}$

Likewise, $$A_2+A_3=\frac 12R^2(2\phi-\sin2\phi)$$ where $\cos\phi=\frac hR$ so $\sin2\phi=2\frac{h\sqrt{R^2-h^2}}{R^2}$

And furthermore, $$A_1+A_2+A_3=\pi R^2-\Delta-A_4$$ where $$\Delta=\frac 12(w+\sqrt{R^2-h^2})(h+\sqrt{R^2-w^2})$$ and $$A_4=\frac 12R^2(\psi-\sin\psi)$$ where $\psi=\frac{3\pi}{2}-\theta-\phi$

Enjoy...

David Quinn
  • 35,087