The problem was to find
$$\lim_{n\to\infty}\sqrt[n]{4^n+9^n}$$
So after a couple tries what I did was to take the natural logarithm of the limit so
$$\lim_{n\to\infty}\sqrt[n]{4^n+9^n}=L$$ $$\downarrow$$ $$\lim_{n\to\infty}\ln(\sqrt[n]{4^n+9^n})=\ln L$$ $$\downarrow$$ $$\lim_{n\to\infty}\frac{\ln({4^n+9^n})}{n}=\ln L$$ $$\downarrow L'Hopital$$ $$\lim_{n\to\infty}\frac{4^n\ln 4+9^n\ln 9}{4^n+9^n}=\ln L$$
And there I'm stuck. I checked in Wolfram and $\lim_{n\to\infty}$ of both the initial function and the one after L'Hopital's rule is $9$. ($\ln L=\ln 9\rightarrow L=9$).
I'd like to know how to find the limit from the last step I made, and if there's a more elegant way of solving the problem (which I'm sure there is), maybe without using L'Hôpital's rule.
Thanks.