$\newcommand{\bbx}[1]{\bbox[8px,border:1px groove navy]{{#1}}\ }
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{\mrm{CV}}\nabla\phi\,\dd V & =
\sum_{i}\hat{x}_{i}\int_{\mrm{CV}}\partiald{\phi}{x_{i}}\,\dd V =
\sum_{i}\hat{x}_{i}\int_{\mrm{CV}}\nabla\cdot\pars{\phi\,\hat{x}_{i}}\,\dd V
\\[5mm] & =
\sum_{i}\hat{x}_{i}\int_{\mrm{\partial CV}}\phi\,\hat{x}_{i}\cdot\dd\vec{S}
=
\sum_{i}\hat{x}_{i}\int_{\mrm{\partial CV}}\phi\,\pars{\dd\vec{S}}_{i}
\\[5mm] & =
\int_{\mrm{\partial CV}}\phi\,\sum_{i}\pars{\dd\vec{S}}_{i}\hat{x}_{i} =\
\bbx{\int_{\mrm{\partial CV}}\phi\,\dd\vec{S}}
\end{align}
One interesting application of this identity is the Archimedes Principle derivation ( the force magnitude over a body in a fluid is equal to the weight of the mass of fluid displaced by the body ):
$$
\left\{\begin{array}{rl}
\ds{P_{\mrm{atm.}}:} & \mbox{Atmospheric Pressure.}
\\[1mm]
\ds{\rho:} & \mbox{Fluid Density.}
\\[1mm]
\ds{g:} & \mbox{Gravity Acceleration}\ds{\ \approx 9.8\ \mrm{m \over sec^{2}}.}
\\[1mm]
\ds{z:} & \mbox{Depth.}
\\[1mm]
\ds{m_{\mrm{fluid.}}:} & \ds{\rho V_{\mrm{body}} = \rho\int_{\mrm{CV}}\,\dd V}
\end{array}\right.
$$
\begin{align}
\int_{\mrm{\partial CV}}\pars{P_{\mrm{atm.}} + \rho gz}\pars{-\dd\vec{S}} & =
-\int_{\mrm{CV}}\nabla\pars{P_{\mrm{atm.}} + \rho gz}\,\dd V \\[2mm] & =
-\int_{\mrm{CV}}\rho g\,\hat{z}\,\dd V = -m_{\mrm{fluid}}\, g\,\hat{z}
\end{align}