There is a proof of this in: If $\sum a_n b_n <\infty$ for all $(b_n)\in \ell^2$ then $(a_n) \in \ell^2$
But I am wondering if there is a contrapositive proof.
Attempt
Given $\sum a_{n}^{2}=\infty$ we want $b_{n}\in l^{2}$ s.t. $\sum a_{n}b_{n}=\infty$.
Let $n_{k}$ be such that $\sum_{n_{k}}^{n_{k+1}}|a_{m}|>\sum_{n_{k}}^{n_{k+1}}a_{m}^{2}>k$, then for $b_{m}=\frac{sign(a_{m})}{k}$ for $n_{k}\leq m\leq n_{k+1}$ we get
$$\sum a_{n}b_{n}=\sum_{n_{k}}^{n_{k+1}}|a_{m}|\frac{1}{k}>\sum 1=\infty.$$
However, the problem is that $\sum b_{m}^{2}=\infty$ if say $n_{k+1}-n_{k}=k^{2}$.