To elaborate on @DavideGiraudo's solution, here we prove that for each $i\in\mathbb{N}$, $\{a_{ij}:j\in\mathbb{N}\}$ belonged to $\ell_q$, where $\frac1p+\frac1q=1$, $1\leq p$.
Lemma: Suppose $\alpha:\mathbb{N}\rightarrow\mathbb{C}$ is a sequence such that for all $x\in\ell_p$, $\alpha x\in\ell_1$, i.e., $\sum_j|\alpha_j x_j|<\infty$. Then, $\alpha\in\ell_q$.
If $p=\infty$, take $x\equiv\mathbb{1}\in\ell_\infty$. Then $\alpha=\alpha\mathbb{1}\in\ell_1$.
Suppose $1\leq p<\infty$. For any $m\in\mathbb{N}$ define the linear functional $\Lambda_m:x\mapsto \sum^m_{j=1}\alpha_jx_j$. It is clear that $\Lambda_m\in\ell^*_p$. For any $x\in\ell_p$, the orbit $\{\Lambda_mx:m\in\mathbb{N}\}$ is a bounded set in $\mathbb{N}$ since
$$|\Lambda_mx|\leq\sum^m_{j=1}|\alpha_j||x_j|\leq \sum^\infty_{j=1}|\alpha_j||x_j|=\|\alpha x\|_1<\infty$$
for all $m$. Since $\ell_p$ is a Banach space, an application of the Banach-Steinhaus theorem (a.k.a. uniform boundedness principle, which is based on Baire's category theorem) shows that $c:=\sup_m\|\Lambda_m\|<\infty$. Hence, for any $y\in\ell_p$
$$\Big|\sum^\infty_{j=1}\alpha_jy_j\Big|=\lim_{m\rightarrow\infty}\Big|\sum^m_{j=1}\alpha_jy_j\Big|=\lim_m|\Lambda_m y|\leq c\|y\|_p$$
that is, the linear map $\Lambda:y\mapsto\sum^\infty_{j=1}\alpha_jy_j$ is an element of $\ell^*_p\cong\ell_q$
To conclude, notice that from the Riesz representation theorem, there is $a\in\ell_q$ such that $\Lambda y=\sum^\infty_{j=1}a_jy_j$. Applying $\Lambda$ to $e_i=\mathbb{1}_{\{i\}}$, we obtain that $\alpha_i=a_i$ for all $I\in\mathbb{N}$. This shows that $\alpha\in\ell_q$.