For $p \in [1, +\infty]$, let $q \in [1, +\infty]$, such that $\frac1p +\frac1q =1$, (with the usual convention that $\frac1\infty=0$).
It is immediate that $A$ is linear. So it remains to be proved that $A$ is bounded.
For all $i$ and $k$ positive integers, let us define $\phi_{i k}$ on $\ell^p$ by, for all $f \in \ell^p$,
$$ \phi_{i k}(f) = \sum_{j=1}^k a_{ij}f(j) $$
It is clear that $\phi_{i k}$ is linear. Note that, for each $i$ and $k$, we have that $(a_{ij})_{j=1}^k \in \ell^q$. So $\phi_{i k}$ is bounded linear and $\| \phi_{i k} \| = \| (a_{ij})_{j=1}^k \|_q$ (see Remark).
Now, note that, for all $f \in \ell^p$, $\sup_{i, k} | \phi_{i k}(f) | < \infty$. So, by the Uniform Boundness Principle,
$$\sup_{i, k} \| \phi_{i k} \| < \infty$$
that is,
$\sup_{i, k} \| (a_{ij})_{j=1}^k \|_q < \infty$. Let $M =\sup_{i, k} \| (a_{ij})_{j=1}^k \|_q < \infty$.
It follows that
$$ \sup_{i} \| (a_{ij})_{j=1}^\infty \|_q \leq M < \infty$$
Now,, for each $i$ positive integer, let us define $\phi_i$ on $\ell^p$ by, for all $f \in \ell^p$,
$$ \phi_i(f) = \sum_{j=1}^\infty a_{ij}f(j) $$
It is clear that $\phi_i$ is linear and, for all $f \in \ell^p$,
$$ |\phi_i(f)| \leq \| (a_{ij})_{j=1}^\infty \|_q \|f\|_p \leq M \|f\|_p $$
So $\phi_i$ is bounded.
For each $i$ positive integer, let $e_i \in \ell^p$ be such that $e_i = (e_{i,j})_{j=1}^\infty$ and $e_{i,i} = 1$ and $e_{i,j}=0$ if $i \ne j$.
Now, for each $r$ positive integer, let us define $\psi_r$ on $\ell^p$ by, for all $f \in \ell^p$,
$$ \psi_r(f) = \sum_{i=1}^r \phi_i(f) e_i \in \ell^p $$
It is clear that $\psi_r$ is linear and bounded. Moreover,
$$ \sup_r \|\psi_r(f) \|_p \leq \|Af\|_p < \infty$$
So, by the Uniform Boundness Principle, we have that
$$ \sup_r \|\psi_r \|_{\mathcal{B}(\ell^p, \ell^p)} < \infty$$
Let $K = \sup_r \|\psi_r \|_{\mathcal{B}(\ell^p, \ell^p)} < \infty$.
So, we have, for all $r$ and all $f \in \ell^p$,
$$\|\psi_r(f)\|_p \leq K \|f\|_p \tag{1} $$
Note that, for all $f \in \ell^p$, $\psi_r(f)$ converges to $Af$ in $\ell^p$, so we have that $\|\psi_r(f)\|_p$ converges to $\|Af\|_p$. Form $(1)$, we have that
$$ \|Af\|_p \leq K \|f\|_p $$
So, $A$ is bounded.
Remark: Since $(a_{ij})_{j=1}^k \in \ell^q$ and, for all $f \in \ell^p$,
$ \phi_{i k}(f) = \sum_{j=1}^k a_{ij}f(j) $, we have that $\| \phi_{i k} \| = \| (a_{ij})_{j=1}^k \|_q$. It is a standard result on the duality of $\ell^p$ and $\ell^q$.