[2016-06-07] Note: General solution added to provide a comparison with the example part.
Here we show that according to OPs example
\begin{align*}
y(x)=x^{\frac{1}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})
\end{align*}
is a solution of the differential equation
\begin{align*}
y^{\prime\prime}+9xy=0\tag{1}
\end{align*}
In the following we use the prime notation $f^\prime$ to denote the derivative of $f$. We will often use the product rule for derivatives
\begin{align*}
(f\cdot g)^\prime=f^\prime \cdot g+f\cdot g^\prime\qquad\qquad (f(x)g(x))^\prime=f^\prime(x) g(x)+f(x)g^\prime(x)
\end{align*}
and the chain rule
\begin{align*}
(f\circ g)^\prime=(f^\prime \circ g)\cdot g^\prime\qquad\qquad\quad (f(g(x)))^\prime=f^\prime(g(x))g^\prime(x)
\end{align*}
We start with
\begin{align*}
y(x)&=x^{\frac{1}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})\\
\end{align*}
and obtain the first derivative
\begin{align*}
y^\prime(x)&=\left(x^{\frac{1}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})\right)^\prime\\
&=\left(x^{\frac{1}{2}}\right)^\prime Z_{\frac{1}{3}}(2x^{\frac{3}{2}})
+x^\frac{1}{2}\left(Z_{\frac{1}{3}}(2x^{\frac{3}{2}})\right)^\prime\tag{2}\\
&=\frac{1}{2}x^{-\frac{1}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})
+x^{\frac{1}{2}}{Z^\prime_{\frac{1}{3}}}(2x^{\frac{3}{2}})\cdot\left(2x^{\frac{3}{2}}\right)^\prime\tag{3}\\
&=\frac{1}{2}x^{-\frac{1}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})
+x^{\frac{1}{2}}Z^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})\cdot3x^{\frac{1}{2}}\\
&=\frac{1}{2}x^{-\frac{1}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})
+3xZ^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})\tag{4}\\
\end{align*}
Comment:
The next step is getting the second derivative. We obtain from (4)
\begin{align*}
y^{\prime\prime}(x)&=\left(\frac{1}{2}x^{-\frac{1}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})\right)^\prime
+\left(3xZ^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})\right)^\prime\\
&=\left(\frac{1}{2}x^{-\frac{1}{2}}\right)^\prime Z_{\frac{1}{3}}(2x^{\frac{3}{2}})
+\frac{1}{2}x^{-\frac{1}{2}}\left(Z_{\frac{1}{3}}(2x^{\frac{3}{2}})\right)^\prime\\
&\qquad+\left(3x\right)^\prime Z^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})
+3x \left(Z^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})\right)^\prime\tag{5}\\
&=-\frac{1}{4}x^{-\frac{3}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})
+\frac{1}{2}x^{-\frac{1}{2}}Z^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})\cdot\left(2x^{\frac{3}{2}}\right)^\prime\\
&\qquad+3 Z^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})
+3xZ^{\prime\prime}_{\frac{1}{3}}(2x^{\frac{3}{2}})\cdot\left(2x^{\frac{3}{2}}\right)^\prime\tag{6}\\
&=-\frac{1}{4}x^{-\frac{3}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})
+\frac{1}{2}x^{-\frac{1}{2}}Z^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})\cdot 3x^{\frac{1}{2}}\\
&\qquad+3 Z^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})
+3xZ^{\prime\prime}_{\frac{1}{3}}(2x^{\frac{3}{2}})\cdot 3x^{\frac{1}{2}}\\
&=-\frac{1}{4}x^{-\frac{3}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})
+\frac{9}{2}Z^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})
+9x^{\frac{3}{2}}Z^{\prime\prime}_{\frac{1}{3}}(2x^{\frac{3}{2}})\tag{7}\\
\end{align*}
Comment:
So, let's put $y(x)=x^{\frac{1}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})$ and the result (7) of $y^{\prime\prime}(x)$ into the differential equation (1). We obtain
\begin{align*}
y^{\prime\prime}&+9xy\\
&=-\frac{1}{4}x^{-\frac{3}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})
+\frac{9}{2}Z^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})
+9x^{\frac{3}{2}}Z^{\prime\prime}_{\frac{1}{3}}(2x^{\frac{3}{2}})
+9x\left(x^{\frac{1}{2}}Z_{\frac{1}{3}}(2x^{\frac{3}{2}})\right)\\
&=9x^{\frac{3}{2}}Z^{\prime\prime}_{\frac{1}{3}}(2x^{\frac{3}{2}})
+\frac{9}{2}Z^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})
+\left(9x^{\frac{3}{2}}-\frac{1}{4}x^{-\frac{3}{2}}\right)Z_{\frac{1}{3}}(2x^{\frac{3}{2}})\tag{8}
\end{align*}
On the other hand we know that $Z_p(x)$ is a solution of
\begin{align*}
x^2y^{\prime\prime}(x)+xy^{\prime}(x)+(x^2-p^2)y(x)=0
\end{align*}
This means $Z_{\frac{1}{3}}(x)$ fulfils
\begin{align*}
x^2Z_{\frac{1}{3}}^{\prime\prime}(x)+xZ_{\frac{1}{3}}^{\prime}(x)+\left(x^2-\frac{1}{9}\right)Z_{\frac{1}{3}}(x)=0\tag{9}
\end{align*}
Substituting
\begin{align*}
x\rightarrow 2x^{\frac{3}{2}}
\end{align*}
in (9) results in
\begin{align*}
\left(2x^{\frac{3}{2}}\right)^2Z_{\frac{1}{3}}^{\prime\prime}(2x^{\frac{3}{2}})+2x^{\frac{3}{2}}Z_{\frac{1}{3}}^{\prime}(2x^{\frac{3}{2}})+\left((2x^{\frac{3}{2}})^2-\frac{1}{9}\right)Z_{\frac{1}{3}}(2x^{\frac{3}{2}})=0\\
4x^3Z_{\frac{1}{3}}^{\prime\prime}(2x^{\frac{3}{2}})+2x^{\frac{3}{2}}Z_{\frac{1}{3}}^{\prime}(2x^{\frac{3}{2}})+\left(4x^3-\frac{1}{9}\right)Z_{\frac{1}{3}}(2x^{\frac{3}{2}})=0\\
\end{align*}
and multiplying this equation with $\frac{9}{4}x^{-\frac{3}{2}}$ finally gives
\begin{align*}9x^{\frac{3}{2}}Z^{\prime\prime}_{\frac{1}{3}}(2x^{\frac{3}{2}})
+\frac{9}{2}Z^\prime_{\frac{1}{3}}(2x^{\frac{3}{2}})
+\left(9x^{\frac{3}{2}}-\frac{1}{4}x^{-\frac{3}{2}}\right)Z_{\frac{1}{3}}(2x^{\frac{3}{2}})=0
\end{align*}
We see the left-hand side is equal to (8) and we conclude that $x^{\frac{1}{2}}Z_{\frac{1}{3}}\left(2x^{\frac{3}{2}}\right)$ is a solution of
\begin{align*}
y^{\prime\prime}+9xy=0
\end{align*}
Note: In the same way we can show that
\begin{align*}
y(x)=x^aZ_p(bx^c)
\end{align*}
is a solution of
\begin{align*}
y^{\prime\prime}+\left(\frac{1-2a}{x}\right)y^\prime+\left[(bcx^{c-1})^2+\frac{a^2-p^2c^2}{x^2}\right]y=0
\end{align*}
Note: Here as small supplement to the already given nice answers by @JJacquelin and @Bacon the general derivation just to provide a comparison with the example part of my answer.
We show that
\begin{align*}
y(x)=x^{a}Z_{p}(bx^{c})
\end{align*}
is a solution of the differential equation
\begin{align*}
y^{\prime\prime}+\left(\frac{1-2a}{x}\right)y^\prime+\left[(bcx^{c-1})^2+\frac{a^2-p^2c^2}{x^2}\right]y=0\tag{10}
\end{align*}
We start with calculating the first derivative
\begin{align*}
y^\prime(x)&=\left(x^{a}Z_{p}(bx^{c})\right)^\prime\\
&=\left(x^{a}\right)^\prime Z_{p}(bx^{c})
+x^a\left(Z_{p}(bx^{c})\right)^\prime\tag{11}\\
&=ax^{a-1}Z_{p}(bx^{c})
+x^{a}Z^\prime_p(bx^{c})\cdot\left(bx^{c}\right)^\prime\tag{12}\\
&=ax^{a-1}Z_{p}(bx^{c})
+x^{a}Z^\prime_p(bx^{c})\cdot bcx^{c-1}\\
&=ax^{a-1}Z_{p}(bx^{c})
+bcx^{a+c-1}Z^\prime_p(bx^{c})\tag{13}\\
\end{align*}
Comment:
The next step is getting the second derivative. We obtain from (13)
\begin{align*}
y^{\prime\prime}(x)&=\left(ax^{a-1}Z_{p}(bx^{c})\right)^\prime
+\left(bcx^{a+c-1}Z^\prime_{p}(bx^{c})\right)^\prime\\
&=(ax^{a-1})^\prime Z_{p}(bx^{c})+ax^{a-1}\left(Z_{p}(bx^{c})\right)^\prime\\
&\qquad+(bcx^{a+c-1})^\prime Z_{p}^\prime(bx^{c})+bcx^{a+c-1}\left(Z_{p}^\prime(bx^{c})\right)^\prime\tag{14}\\
&=a(a-1)x^{a-2} Z_{p}(bx^{c})+ax^{a-1}Z_{p}^\prime(bx^{c})\cdot\left(bx^{c}\right)^\prime\\
&\qquad+bc(a+c-1)x^{a+c-2} Z_{p}^\prime(bx^{c})
+bcx^{a+c-1}Z_{p}^{\prime\prime}(bx^{c})\cdot\left(bx^{c}\right)^\prime\tag{15}\\
&=a(a-1)x^{a-2} Z_{p}(bx^{c})+ax^{a-1}Z_{p}^\prime(bx^{c})\cdot bcx^{c-1}\\
&\qquad+bc(a+c-1)x^{a+c-2} Z_{p}^\prime(bx^{c})
+bcx^{a+c-1}Z_{p}^{\prime\prime}(bx^{c})\cdot bcx^{c-1}\\
&=a(a-1)x^{a-2} Z_{p}(bx^{c})+(2a+c-1)bcx^{a+c-{2}}Z_{p}^\prime(bx^{c})\\
&\qquad+b^2c^2x^{a+2c-2}Z_{p}^{\prime\prime}(bx^{c})\tag{16}\\
\end{align*}
Comment:
So, let's put $y(x)=x^{a}Z_{p}(bx^{c})$ and (13), the result of $y^\prime(x)$ and (16), the result of $y^{\prime\prime}(x)$ into the differential equation (10). We obtain
\begin{align*}
y^{\prime\prime}(x)&+\left(\frac{1-2a}{x}\right)y^\prime(x)+\left[(bcx^{c-1})^2+\frac{a^2-p^2c^2}{x^2}\right]y(x)\\
&=a(a-1)x^{a-2} Z_{p}(bx^{c})+(2a+c-1)bcx^{a+c-2}Z_{p}^\prime(bx^{c})\\
&\qquad+b^2c^2x^{a+2c-2}Z_{p}^{\prime\prime}(bx^{c})\\
&\qquad+\left(\frac{1-2a}{x}\right)\left(ax^{a-1}Z_{p}(bx^{c})
+bcx^{a+c-1}Z^\prime_p(bx^{c})\right)\\
&\qquad+\left[(bcx^{c-1})^2+\frac{a^2-p^2c^2}{x^2}\right]x^{a}Z_{p}(bx^{c})\\
&=c^2x^{a-2}\left(b^2x^{2c}Z_{p}^{\prime\prime}(bx^{c})+bx^cZ_{p}^{\prime}(bx^{c})
+(b^2x^{2c}-p^2)Z_{p}(bx^{c})\right)\tag{17}
\end{align*}
On the other hand we know that $Z_p(x)$ is a solution of
\begin{align*}
x^2y^{\prime\prime}(x)+xy^{\prime}(x)+(x^2-p^2)y(x)=0
\end{align*}
This means $Z_{p}(x)$ fulfils
\begin{align*}
x^2Z_{p}^{\prime\prime}(x)+xZ_{p}^{\prime}(x)+\left(x^2-p^2\right)Z_{p}(x)=0\tag{18}
\end{align*}
Substituting
\begin{align*}
x\rightarrow bx^{c}
\end{align*}
in (18) results in
\begin{align*}
(bx^{c})^2Z_{p}^{\prime\prime}(bx^{c})+bx^{c}Z_{p}^{\prime}(bx^{c})+\left((bx^{c})^2-p^2\right)Z_{p}(bx^{c})=0\\
b^2x^{2c}Z_{p}^{\prime\prime}(bx^{c})+bx^{c}Z_{p}^{\prime}(bx^{c})+\left(b^2x^{2c}-p^2\right)Z_{p}(bx^{c})=0
\end{align*}
and multiplying this equation with $c^2x^{a-2}$ finally gives
\begin{align*}c^2x^{a-2}\left(b^2x^{2c}Z_{p}^{\prime\prime}(bx^{c})+bx^{c}Z_{p}^{\prime}(bx^{c})+\left(b^2x^{2c}-p^2\right)Z_{p}(bx^{c})\right)=0
\end{align*}
We see the left-hand side is equal to (17) and we conclude that $x^{a}Z_{p}\left(bx^{c}\right)$ is a solution of
\begin{align*}
x^2y^{\prime\prime}(x)+xy^{\prime}(x)+(x^2-p^2)y(x)=0
\end{align*}