I want to take first partial derivative w.r.t. $x_i$ (for $i,j,k=1,\ldots,n$) of $$x\mapsto\frac 1{|x-y|^{n-2}},\quad x\neq y.$$ where $y\in\mathbb{R}^n$ is fixed.
Can I ask here if the following calculation is correct? I would like to make sure because I need to take the second partial derivative w.r.t. $x_i$ as well. \begin{align} \frac{\partial}{\partial x_i} \left(\frac 1{|x-y|^{n-2}} \right) &= \frac{\partial}{\partial x_i} |x-y|^{2-n} \\ &= \frac{\partial}{\partial x_i} \left(\sum_{i=1}^n (x_i-y_i)^2 \right)^{\frac{2-n}2} \\ &= \frac{2-n}2 \left(\sum_{i=1}^n (x_i-y_i)^2 \right)^{-\frac{n}2} \frac d{dx_i} (x_i-y_i)^2 \\ &= (2-n) \left(\sum_{i=1}^n (x_i-y_i)^2 \right)^{-\frac{n}2} (x_i-y_i) \\ &= (2-n) \frac{x_i-y_i}{|x-y|^n} \end{align}
Edit: What about the second partial derivative? (Edit: Yes, Jack is right, the $i$'s below should have been $k$'s.) \begin{align} \frac{\partial^2}{\partial^2 x_k} \left(\frac 1{|x-y|^{n-2}} \right) &= (2-n) \frac{\partial}{\partial x_k} \left(\frac{x_i-y_i}{|x-y|^n} \right) \\ &= (2-n) \left(\frac{|x-y|^n \frac{\partial}{\partial x_k}(x_i-y_i)-(x_i-y_i) \frac{\partial}{\partial x_k}|x-y|^{2n}}{|x-y|^{2n}} \right) \\ &= (2-n) \left(\frac{|x-y|^n (1)-(x_i-y_i) 2n|x-y|^{n-1}(x_k-y_k)}{|x-y|^{2n}} \right) \\ &= (2-n)\left(\frac{1}{|x-y|^n}-2n \frac{(x_i-y_i)(x_k-y_k)}{|x-y|^{n+1}} \right) \end{align}
Second edit: Following Jack's updated answer, I now have \begin{align} \frac{\partial^2}{\partial x_j \partial x_k}\left(\frac 1{|x-y|^{n-2}} \right) &= \frac{\partial}{\partial x_j} \left(\frac{x_k-y_k}{|x-y|^n} \right)\\ &= \frac{\partial}{\partial x_j}(x_k-y_k) \frac 1{|x-y|^n} + (x_k-y_k) \frac{\partial}{\partial x_j} \frac 1{|x-y|^n} \\ &= \frac 1{|x-y|^n} + n \frac{(x_j-y_j)(x_k-y_k)}{|x-y|^{n+2}}, \end{align} the last step owing to $(*)$ in Jack's answer with $n \mapsto n+2$.