When I know
$$a+b+c = A$$ $$a^2+a^2+b^2 = B $$ $$a^3+b^3+c^3 = C$$
Then how can I find the $a$ and $b$ and $c$?
When I know
$$a+b+c = A$$ $$a^2+a^2+b^2 = B $$ $$a^3+b^3+c^3 = C$$
Then how can I find the $a$ and $b$ and $c$?
Use $$a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)$$ to find $ab+bc+ca=P$
and $$a^3+b^3+c^3-3abc=(a+b+c)\{(a+b+c)^2-3(ab+bc+ca)\}$$ to find $abc=Q$
Then $a,b,c$ are the roots of $$t^3-At^2+Pt-Q=0$$