In my research in graph theory i am getting symmetric matrices with trace zero of this kind
$$ \begin{bmatrix} 0 & 1 & 2 & 3 & 3 \\ 1 & 0 & 1 & 2 & 2 \\2 & 1 & 0 & 1 & 1 \\ 3 & 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 0 \end{bmatrix}$$ In general $$ D_{M} (G) = \begin{bmatrix} 0_{k\times k} & 1_{k\times k_{1}} & 2_{k\times k_{2}} & . . . & d_{k\times k_{d}}\\ 1_{k_{1}\times k} & 0_{k_{1}\times k_{1}} & 1_{k_{1}\times k_{2}} & . . . & (d-1)_{k_{1}\times k_{d}} \\ 2_{k_{2}\times k} & 1_{k_{2}\times k_{1}} & 0_{k_{2}\times k_{2}} & . . . & (d-2)_{k_{2}\times k_{d}}\\ . & . & . & . . . & .\\ . & . & . & . . . & .\\ . & . & . & . . . & .\\ d_{k_{d}\times k} & (d-1)_{k_{d}\times k_{1}} & (d-2)_{k_{d}\times k_{2}} & . . . & 0_{k_{d}\times k_{d}} \end{bmatrix}$$ Here the entries are all non-negative integers and $i_{m\times n}$ denotes a block whose entries are all i's 1. I find the matrices to be singular, can that be proved generally? 2. Also the numerical value of the largest eigenvalue increases with the increase in the value of even one entry, how to prove this?