$\textbf{Proposition}$ The PDF of the Maximum of a Brownian Motion with Drift is given by $$ f_{M_t}(m)={\sqrt{\frac{2}{\pi t}}} \exp\left( - \frac{(m-at)^2}{2t} \right) -2a\exp\left({2am}\right) \mathcal{N}\left ( \frac{-m-at}{\sqrt{t}} \right) $$ where $\mathcal{N}$ is the CDF of the standard normal variable.
Starting from the joint density of a drifted Brownian Motion $W_t$ and its running maximum $M_t=\sup_{s\le{t}}W_s$ I would like to compute the marginal density of $M_t$.
The joint density, which can be recovered through an application of Girsanov's theorem, reads
$$ f_{M_t,W_t}(m,\omega)=\mathrm{e}^{-\frac{a^2t}{2}+a\omega}\frac{2(2m-\omega)}{t \sqrt{2\pi t}}{\mathrm{e}^{-\frac{(2m-\omega)^2}{2t}}}. $$
Applying the Theorem of Tonelli-Fubini, together with the observation that $M_t\le m \implies W_t\le m$, leads to the evaluation of
$$ f_{M_t}(m)=\int_{-\infty}^{m} \mathrm{e}^{-\frac{a^2t}{2}+a\omega}\frac{2(2m-\omega)}{t \sqrt{2\pi t}}{\mathrm{e}^{-\frac{(2m-\omega)^2}{2t}}}d\omega. $$
Integrating by parts yields
$$ f_{M_t}(m)={\sqrt{\frac{2}{\pi t}}} \mathrm{e}^\frac{(m-at)^2}{2t}-\frac{2a}{\sqrt{2 \pi t}}\mathrm{e}^{-\frac{a^2t}{2}}\int_{-\infty}^{m} \mathrm{e}^{a\omega}{\mathrm{e}^{-\frac{(2m-\omega)^2}{2t}}}d\omega $$
How do I solve this last integral?