With $k$ representing number of successes of trials, $r$ is the number of failures, and $p$ is probability of successes. I derivated the expected value of negative binomial distribution like this:
$$ \mu_x =\sum^\infty_{k=0} {k{k+r-1 \choose k}p^k(1-p)^r}\\ =\sum^\infty_{k=1}{\frac{(k-1+r)!}{(k-1)!(r-1)!}p^{k}(1-p)^r}\\ =rp\sum^\infty_{k=1}{\frac{(k-1+r)!}{(k-1)!r!}p^{k-1}(1-p)^r}\\ suppose\ n=k+r-1,then:{\sum^\infty_{n=r}{\frac{n!}{(n-r)!r!}p^{n-r}(1-p)^r}=(p+(1-p))^n=1},\\ \mu_x=rp $$
why is not same as: $ \mu_x=\frac{rp}{1-p} $,where am I wrong?