Find the last $2$ digits of $$\large7^{7^{7^{10217}}}$$
So far I have: $17\cdot 601=10217$ and $7=7 \pmod{10}$. Any help greatly appreciated.
Find the last $2$ digits of $$\large7^{7^{7^{10217}}}$$
So far I have: $17\cdot 601=10217$ and $7=7 \pmod{10}$. Any help greatly appreciated.
Note that $100=4\cdot 25$. We can find $7^{7^{7^{10217}}}$ mod $4$, $25$, then combine this to get the value mod $100$ using the Chinese Remainder Theorem.
$7^4\equiv \left(7^2\right)^2\equiv (-1)^2\equiv 1\pmod{25}$
Therefore $$7^{7^{7^{10217}}}\equiv 7^{7^{7^{10217}}\pmod 4}\equiv 7^{(-1)^{7^{10217}}\pmod 4}\pmod{25}$$
$$\equiv 7^{-1\pmod{4}}\equiv 7^{3}\equiv \left(7^2\right)\cdot 7\equiv (-1)\cdot 7\equiv 18\pmod{25}$$
Also
$$7^{7^{7^{10217}}}\equiv (-1)^{7^{7^{10217}}}\equiv -1\equiv 3\pmod{4}$$
Using the Chinese Remainder theorem, $7^{7^{7^{10217}}}\equiv 43\pmod{100}$.