Let's take care of the first term:
$1507\equiv 7\mod 100$. To find the order of $7$ modulo $100$, use the Chinese remainder theorem:
$7$ has order $2\mod4$, and order $4\bmod25$ since $7^2\equiv -1\mod25$, hence it has order $4$ mod $100$ and
$$1507^{3381}\equiv 7^{3381\bmod4}\equiv 7\mod 100.$$
Now let's see the second term:
Similarly, $37\equiv 1\bmod4$ and $37\equiv 12\mod 25$. With the Fast exponentiation algorithm, one checks $12^{10}\equiv24 \mod25$, hence it ($37$ as well as $12$) has order $20$. Thus
$$1437^{3757}\equiv 37^{3757\bmod 20}\equiv 37^{-3} \mod 100.$$
Now the Extended Euclidean algorithm yields $\;37^{-1}\equiv -27\mod 100$, hence
\begin{align*}
37^{-2}&\equiv 27^2=729\equiv 29,\\ 37^{-3}&\equiv -27\cdot 29\equiv -27^2-2\cdot 27\equiv-29-54\equiv -83\equiv 17\mod100,
\end{align*}
and finally $\enspace1507^{3381}+1437^{3757}\equiv \color{red}{24\mod100}.$