Consider the polynomial
$$p(x) = a_0 + a_1x + a_2x^2 + · · · + a_nx^n$$
where $a_0, a_1, . . . , a_n ∈ \Bbb Z$. Show that if $p(x_i) = 7$ for 4 distinct integers $x_0, x_1, x_2, x_3$, then $p(z) \neq 14$
for any $z ∈ \Bbb Z$.
How do I start this question?