Okay, we can show this in different ways, depending on how we define rank. I'll try to show these using both these definitions:
- $\operatorname{rank}(A)$ is the dimension of the range of $A$.
- $\operatorname{rank}(A)$ is the least number $r$ of rank 1 matrices $A_1, A_2, \dots, A_r$ so that $$A = A_1 + A_2 + \dots + A_r$$ and a rank one matrix $A_1$ is defined as a matrix that can be written as an outer product: $A_1 = xy^T$ for vectors $x, y$.
These two definitions are equivalent. The proof of this is left as an exercise to the reader.
If $B$ has rank 1, then $AB$ has at most rank one
Fixed the formulation for you on this one. $AB$ can have rank zero.
Definition 1
$B$ has rank one, so its range is one dimensional. It follows that its nullspace is $n-1$-dimensional. Consider the range of $AB$. If $x$ is in the nullspace of $B$, then $ABx = A0 = 0$, so $AB$'s nullspace is also at least $n-1$-dimensional, so its range is at most 1-dimensional.
Note that for $AB$ to have rank 1 you must have that $Ax \neq 0$ for some $x$ in the range of $B$. A sufficient, but not necessary, condition for this is that $A$ is invertible.
Definition 2
$B$ has rank one, so it can be written $B = xy^T$. Then $AB = Axy^T = (Ax)y^T$, so $AB$ can be written as one outer product (but we don't know if it can be written using zero outer products, which would be the case if $Ax = 0$).
A rank one matrix has $n-1$ zero eigenvalues
Definition 1
As said before, if $B$ has rank 1, then its nullspace is $n-1$ dimensional. Pick a basis $v_1, \dots, v_{n-1}$ for the nullspace of $B$. These are eigenvectors of $B$ with eigenvalue zero.
Definition 2
Say $B = xy^T$. Then if you multiply a vector $v$ with $B$ you get $xy^Tv$. Note that $y^Tv$ is the inner product of $y$ and $v$. The orthogonal complement $\mathcal U$ to the subspace spanned by $y$ has dimension $n-1$. If $u \in \mathcal U$ then $y^Tu = 0$ and hence
$$Bu = xy^Tu = x \cdot 0 = 0$$
so if you pick a basis for $\mathcal U$, this basis will be eigenvectors to $B$ with eigenvalue 0.
Is there a non-zero eigenvalue?
In short, it is not guaranteed that there will be a non-zero eigenvalue.
This rank one nilpotent matrix:
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
has zero as eigenvalue with algebraic multiplicity 2 and geometric multiplicity 1. It therefore has $n-1$ zero eigenvalues, but it does not have 1 non-zero eigenvalue. In other words, it is not guaranteed that you will have a non-zero eigenvalue for rank one matrices.