Are there four consecutive binomial coefficients in a row in an arithmetic progression?
This is suggested by Will Jagy's comment to this question:
Find $n$ and $k$ if $\:\binom{n\:}{k-1}=2002\:\:\:\binom{n\:}{k}=3003\:\:$
Here is my answer: No. (If my algebra is correct - $P(error) > 1/e$ )
(Nope - I had an error pointed out by mathlove, below. Fortunately, the result is the same.)
To get 4 terms:
$\binom{n}{k} =a$, $\binom{n}{k+1} =a+d$, $\binom{n}{k+2} =a+2d$, $\binom{n}{k+3} =a+3d$.
From the first 3, $d =\binom{n}{k+2}-\binom{n}{k+1} =\binom{n}{k+1}-\binom{n}{k} $
or $\binom{n}{k+2}+\binom{n}{k} =2\binom{n}{k+1}\\ $
or $\frac{n!}{(k+2)!(n-k-2)!}+\frac{n!}{(k)!(n-k)!} =2\frac{n!}{(k+1)!(n-k-1)!} $
or, multiplying by $\frac{(k+2)!(n-k)!}{n!}$,
$(n-k-1)(n-k)+(k+1)(k+2) =2(k+2)(n-k) $
or $n^2-(2k+1)n+k(k+1)+k^2+3k+2 =2(kn+2n-k^2-2k) $
or $n^2-2kn-n+k^2+k+k^2+3k+2 =2kn+4n-2k^2-4k $
or $n^2-4kn+4k^2 =5n-8k-2 $
or $(n-2k)^2 =5n-8k-2 $.
The last 3 give the same thing but with $k+1$ for $k$, so that
$(n-2(k+1))^2 =5n-8(k+1)-2 $
or $(n-2k)^2-4(n-2k)+4 =5n-8k-10 $ or $(n-2k)^2 =9n-16k-14 $.
Equating, $5n-8k-2 =9n-16k-14 $ or $4n =8k+12 $ or $n =2k+3 $.
To summarize, if the terms are $p, q, r, s =a, a+d, a+2d, a+3d$ respectively, I have used $d =q-p = r-q =s-r $ to get $p+r=2q$ and $q+s=2r$.
Another relation would be $2a =p+2q-r $ and $a =q+r-s $ or $p+2q-r =2(q+r-s) $ or $p-3r+2s =0 $.
From this
$\begin{array}\\ 0 &=p-3r+2s\\ &=\binom{n}{k}-3\binom{n}{k+2}+2\binom{n}{k+3}\\ &=\frac{n!}{k!(n-k)!}-3\frac{n!}{(k+2)!(n-k-2)!}+2\frac{n!}{(k+3)!(n-k-3)!}\\ &=(k+1)(k+2)(k+3)-3(k+3)(n-k)(n-k-1)+2(n-k-2)(n-k-1)(n-k)\\ &\text{using Wolfy}\\ &=-4 k^3+12 k^2 n-12 k^2-9 k n^2+33 k n-2 k+2 n^3-15 n^2+13 n+6\\ &\text{again using Wolfy, substituting }n = 2k+3\\ &=-6 (k^2+5 k+6)\\ &=-6 (k+2)(k+3)\\ \end{array} $
Since none of the roots of this are a positive integer, there are no $n$ and $k$ for which the binomial coefficients are in arithmetic progression.