$$ \:\binom{n\:}{k-1}=2002\:\:\:\binom{n\:}{k}=3003\:\: $$
What are the values for n and k?
My initial idea was to divide those two:
$$\frac{\binom{n\:}{k-1}}{\binom{n\:}{k}}=\frac{2002}{3003}\:\:$$
$$\frac{\frac{n!}{\left(k-1\right)!\left(n+1-k\right)!}}{\frac{n!}{k!\left(n-k\right)!}}\:=\frac{2}{3}$$
$$ \frac{k}{n+1-k}\:=\frac{2}{3} $$
After that sum them up:
$$\binom{n\:}{k-1}+\binom{n\:}{k}=\binom{n+1\:}{k}=5005$$
And now devide the third with the first term and solve everything. However I would get both times $5k = 2n+2$ and that's the problem.
