4

Let $c_1,c_2,\ldots,c_{\varphi(m)}$ be the reduced residue set modulo $m>2$. Show that $$c_1+c_2+\cdots+c_{\varphi(m)} \equiv 0 \pmod{m}.$$

My solution looks something like this.

If $c_i \in {\mathbb{Z}_m}^*$, then $m-c_i \in {\mathbb{Z}_m}^*$. Hence, we may take the reduced residue system $$\{c_1,c_2,\ldots,c_{\varphi(m)/2},m-c_{\varphi(m)/2},\ldots,m-c_2,m-c_1\}.$$

Hence, \begin{align} c_1+c_2+\cdots+c_{\varphi(m)} &= c_1+c_2+\cdots+c_{\varphi(m)/2}+m-c_{\varphi(m)/2}+\cdots+m-c_2+m-c_1 \\ &=m \cdot \varphi(m)/2 \equiv 0 \pmod{m}, \end{align}

since $\varphi(m)$ is even for $m >2$.

Is this on the right track?

MrMazgari
  • 1,795
  • 4
    Looks reasonable. As an alternative, note that the sum in question is the coefficient of $x^{\varphi(m)-1}$ in the polynomial $x^{\varphi(m)}-1$. – lulu Nov 11 '15 at 11:11

0 Answers0