Let $2\lt m\in \mathbb N$ and $\{r_1,r_2,...,r_{\phi(m)}\}$ be a reduced residue system modulo $m$. I want to find a necessary and sufficient condition for $k$ such that the set $\{r_1+k,r_2+k,...,r_{\phi(m)}+k\}$ be a reduced residue system modulo $m$ to.
I now that:
Theorem: if $c_1,c_2,\ldots,c_{\varphi(m)}$ be the reduced residue set modulo $m>2$, then $$c_1+c_2+\cdots+c_{\varphi(m)} \equiv 0 \pmod{m}$$ (see here)
We want to the set $\{r_1+k,r_2+k,...,r_{\phi(m)}+k\}$ be a reduced residue system modulo $m$. So, by above theorem: $$r_1+k+r_2+k+...+r_{\phi(m)}+k\equiv 0 \pmod{m}$$ Because of the set: $\{r_1,r_2,...,r_{\phi(m)}\}$ is a reduced residue system modulo $m$, $$r_1+r_2+...+r_{\phi(m)}\equiv 0 \pmod{m}$$ So, we should have: $k\phi(m) \equiv 0 \pmod{m}$. Thus, the necessary condition is that: $k\phi(m) \equiv 0 \pmod{m}$. Is this condition sufficient? if not, what is the sufficient condition?