A function $ f(x) $ defined for $ x \geq 0 $ is said to be convex if, for every $ 0 \leq x_1 \leq x_2 $ and every $ 0 \leq \lambda \leq 1 $, the inequality
$$
f((1 - \lambda)x_1 + \lambda x_2) \leq (1 - \lambda)f(x_1) + \lambda f(x_2)
$$
holds.
Now, suppose $ f(x) $ and $ g(x) $ are convex functions defined for $ x \geq 0 $. Define
$$
h(x) = \max\{f(x), g(x)\}.
$$
Question: Show that $ h(x) $ is also convex.
To show that $ h(x) = \max\{f(x), g(x)\} $ is convex, given that $ f(x) $ and $ g(x) $ are convex, we will proceed as follows:
Proof:
Let $ x_1, x_2 \geq 0 $ and $ 0 \leq \lambda \leq 1 $. We need to show that
$$
h((1 - \lambda)x_1 + \lambda x_2) \leq (1 - \lambda)h(x_1) + \lambda h(x_2).
$$
By definition of $ h(x) $, we have:
$$
h((1 - \lambda)x_1 + \lambda x_2) = \max\{f((1 - \lambda)x_1 + \lambda x_2), g((1 - \lambda)x_1 + \lambda x_2)\}.
$$
Since $ f(x) $ and $ g(x) $ are convex, we know that:
$$
f((1 - \lambda)x_1 + \lambda x_2) \leq (1 - \lambda)f(x_1) + \lambda f(x_2),
$$
$$
g((1 - \lambda)x_1 + \lambda x_2) \leq (1 - \lambda)g(x_1) + \lambda g(x_2).
$$
Taking the maximum of both sides, we obtain:
$$
h((1 - \lambda)x_1 + \lambda x_2) = \max\{f((1 - \lambda)x_1 + \lambda x_2), g((1 - \lambda)x_1 + \lambda x_2)\} \\
\leq \max\{(1 - \lambda)f(x_1) + \lambda f(x_2), (1 - \lambda)g(x_1) + \lambda g(x_2)\}.
$$
Note that:
$$
\max\{(1 - \lambda)f(x_1) + \lambda f(x_2), (1 - \lambda)g(x_1) + \lambda g(x_2)\} \\
\leq (1 - \lambda) \max\{f(x_1), g(x_1)\} + \lambda \max\{f(x_2), g(x_2)\}.
$$
Thus, we have shown that:
$$
h((1 - \lambda)x_1 + \lambda x_2) \leq (1 - \lambda)h(x_1) + \lambda h(x_2).
$$
This completes the proof that $ h(x) $ is convex.
\maxinstead ofmax(similarly use\sininstead ofsinetc) – May 20 '12 at 17:54