The following is a theorem given in Bella Bollobas's Modern graph theory (Springer 2002) Page-73
If $G$ is nontrivial (that is, has at least two vertices), then the parameters $\delta(G)$, $\lambda(G)$ and $\kappa(G)$ satisfy the following inequality: $\kappa(G) \le \lambda(G) \le \delta(G)$, where $\delta(G)$ is the minimum degree of a vertex, $\lambda(G)$ is the edge connectivity, and $\kappa(G)$ is the vertex connectivity.
Proof:
Indeed, if we delete all the edges incident with a vertex, the graph becomes disconnected, so the second inequality holds. To see the other inequality, note first that if $G$ is complete then $\kappa(G) = \lambda(G) = |G| - 1$, and if $\lambda(G) \le 1$ then $\lambda(G) = \kappa(G)$. Suppose now that $G$ is not complete, $\lambda(G) = k \ge 2$, and $\{x_1 y_1, x_2 y_2, \ldots , x_k y_k\}$ is a set of edges disconnecting $G$. If $G - \{x_1, x_2, \ldots , x_k\}$ is disconnected then $\kappa(G) \le k$. Otherwise, each vertex $x_i$ has degree at most $k$ (and so exactly $k$). Deleting the neighbours of $x_1$, we disconnect $G$. Hence $\kappa(G)\le \lambda(G)$.
I did not understand the following part of the proof: "Otherwise, each vertex $x_i$ has degree at most $k$ (and so exactly $k$)" . Why is this true? I would really appreciate an elaborate answer to this.