Define $f$ as follows: $f(x)=e^{-1/x^2}$ if $x\neq 0$ and $f(0)=0$.
Show that $f^{(n)}(0)$ is continuous for all $x$ and $f^{(n)}(0)=0$. $n=1,2,\dots$.
To show this, I have shown that for $x\neq 0$, we have $f^{(n)}(x)=e^{-1/x^2}P_{3n}(1/x),$ where $P_{3n}(t)$ is a real polynomial of degree $3n$.
Hence, to show that $f^{(n)}(0)=0,$ I will use induction. $n=1$ case is trivial. So suppose that $n=k$ holds. Then as $n=k+1$, we have
$\frac{f^{(k)}(x)-f^{(k)}(0)}{x-0}=\frac{f^{(k)}(x)}{x}=\frac{e^{-1/x^2}P_{3k}(1/x)}{x}$.
Now I need to show that the limit of the above fraction as $x\to 0$ tends to $0$. For the case $x\to 0^{+}$, I can argue as follows.
Replace $t=1/x$ in the above fraction, then we get
$\frac{e^{-1/x^2}P_{3k}(1/x)}{x}=\frac{tP_{3k}(t)}{e^{t^2}}=(\frac{tP_{3k}(t)}{e^t})(\frac{e^t}{e^{t^2}})\to 0$ as $t\to \infty$, since we have $\lim_{x\to \infty}\frac{P(x)}{e^x}=0$.
However, I have trouble showing the case for $x\to 0^{-}$, since $\lim_{\to -\infty}\frac{P(x)}{e^x}$ does not exist for all polynomials.
How can I solve this problem? I would greatly appreciate any help.
(added)
My attempt: $\lim_{x\to 0^{-}}\frac{e^{-1/x^2}P_{3k}(1/x)}{x}=\lim_{x\to 0^{-}}e^{-1/x^2}P_{3k+1}(1/x)=\lim_{x\to 0^{+}}e^{-1/x^2}P_{3k+1}(-1/x)=\lim_{t\to \infty}e^{-t^2}P_{3k+1}(-t)=\lim_{t\to\infty}\frac{P_{3k+1}(-t)}{e^t}\cdot \frac{e^t}{e^{t^2}}=0\cdot 0=0$
$\lim_{t\to\infty}\frac{P_{3k+1}(-t)}{e^t}=0$, since
$|\frac{P_{3k+1}(-t)}{e^t}|\le\frac{P_{3k+1}(|-t|)}{e^t} \to 0$ as $t\to \infty$.