$f(x)=e^{-\frac{1}{x^{2}}}$ for $x\neq 0$ and $f(0)=0$. Prove that $f^{(k)}(0)=0$ for all postitive integer $k$.
Problem says "Use L'Hopital's Rule and induction"
Suppose $f^{(n)}(0)=0$
$f^{(n+1)}(x)=\displaystyle \lim_{h \to 0}\frac{f^{(n)}(x+h)-f^{(n)}(x)}{h}$
$f^{(n+1)}(0)=\displaystyle \lim_{h \to 0}\frac{f^{(n)}(h)-f^{(n)}(0)}{h}=\displaystyle \lim_{h \to 0}\frac{f^{(n)}(h)}{h}=\displaystyle \lim_{h \to 0}f^{(n+1)}(h)$
Then how I know $f^{(n+1)}(0)=0$?