How to prove that these conjectures are true ?
Definition : $\text{Let}~ P_m(x)=2^{-m}\cdot \left(\left(x-\sqrt{x^2-4}\right)^{m}+\left(x+\sqrt{x^2-4}\right)^{m}\right)~ , \text{where}~ m ~\text{and}~ x ~\text{are nonnegative integers} .$
Conjecture 1
$$\text{Let} ~N=k\cdot b^n-c ~\text{such that}~ b\equiv 0 \pmod{2}, n>bc , k>0 , c>0 ~\text{and}~ c\equiv 1,7 \pmod{8}$$
$$\text{Let}~ S_i=P_b(S_{i-1})~ \text{with}~ S_0=P_{bk/2}(P_{b/2}(6)) , ~\text{then}$$
$$\text{If}~ N ~\text{is prime then}~ S_{n-1} \equiv P_{(b/2)\cdot\lceil c/2 \rceil}(6) \pmod{N}$$
Searching for counterexample (PARI/GP)
CEkbc(b,c,g)=
{
for(k=1,9,
for(n=b*c+1,g,
N=k*b^n-c;
my(s=Mod(2*polchebyshev(k*b/2,1,polchebyshev(b/2,1,3)),N));
for(i=1,n-1,s=2*polchebyshev(b,1,s/2));
if(!(s==2*polchebyshev((b/2)*ceil(c/2),1,3)) && isprime(N),print(k,n))))
}
Conjecture 2
$$\text{Let} ~N=k\cdot b^n-c ~\text{such that}~ b\equiv 0,4,8 \pmod{12}, n>bc , k>0 , c>0 ~$$
$$\text{and}~ c\equiv 3,5 \pmod{8} .$$
$$\text{Let}~ S_i=P_b(S_{i-1})~ \text{with}~ S_0=P_{bk/2}(P_{b/2}(6)) , ~\text{then}$$
$$\text{If}~ N ~\text{is prime then}~ S_{n-1} \equiv P_{(b/2)\cdot\lfloor c/2 \rfloor}(6) \pmod{N}$$
Searching for counterexample (PARI/GP)
CEkbc(b,c,g)=
{
for(k=1,9,
for(n=b*c+1,g,
N=k*b^n-c;
my(s=Mod(2*polchebyshev(k*b/2,1,polchebyshev(b/2,1,3)),N));
for(i=1,n-1,s=2*polchebyshev(b,1,s/2));
if(!(s==2*polchebyshev((b/2)*floor(c/2),1,3)) && isprime(N),print(k,n))))
}
Conjecture 3
$$\text{Let} ~N=k\cdot b^n-c ~\text{such that}~ b\equiv 2,6,10 \pmod{12}, n>bc , k>0 , c>0 ~$$
$$\text{and}~ c\equiv 3,5 \pmod{8} .$$
$$\text{Let}~ S_i=P_b(S_{i-1})~ \text{with}~ S_0=P_{bk/2}(P_{b/2}(6)) , ~\text{then}$$
$$\text{If}~ N ~\text{is prime then}~ S_{n-1} \equiv -P_{(b/2)\cdot\lfloor c/2 \rfloor}(6) \pmod{N}$$
Searching for counterexample (PARI/GP)
CEkbc(b,c,g)=
{
for(k=1,9,
for(n=b*c+1,g,
N=k*b^n-c;
my(s=Mod(2*polchebyshev(k*b/2,1,polchebyshev(b/2,1,3)),N));
for(i=1,n-1,s=2*polchebyshev(b,1,s/2));
if(!(s==N-2*polchebyshev((b/2)*floor(c/2),1,3)) && isprime(N),print(k,n))))
}
Conjecture 4
$$\text{Let} ~N=k\cdot b^n+c ~\text{such that}~ b\equiv 0 \pmod{2}, n>bc , k>0 , c>0 ~\text{and}~ c\equiv 1,7 \pmod{8}$$
$$\text{Let}~ S_i=P_b(S_{i-1})~ \text{with}~ S_0=P_{bk/2}(P_{b/2}(6)) , ~\text{then}$$
$$\text{If}~ N ~\text{is prime then}~ S_{n-1} \equiv P_{(b/2)\cdot\lfloor c/2 \rfloor}(6) \pmod{N}$$
Searching for counterexample (PARI/GP)
CEkbc(b,c,g)=
{
for(k=1,9,
for(n=b*c+1,g,
N=k*b^n+c;
my(s=Mod(2*polchebyshev(k*b/2,1,polchebyshev(b/2,1,3)),N));
for(i=1,n-1,s=2*polchebyshev(b,1,s/2));
if(!(s==2*polchebyshev((b/2)*floor(c/2),1,3)) && isprime(N),print(k,n))))
}
Conjecture 5
$$\text{Let} ~N=k\cdot b^n+c ~\text{such that}~ b\equiv 0,4,8 \pmod{12}, n>bc , k>0 , c>0 ~$$
$$\text{and}~ c\equiv 3,5 \pmod{8} .$$
$$\text{Let}~ S_i=P_b(S_{i-1})~ \text{with}~ S_0=P_{bk/2}(P_{b/2}(6)) , ~\text{then}$$
$$\text{If}~ N ~\text{is prime then}~ S_{n-1} \equiv P_{(b/2)\cdot\lceil c/2 \rceil}(6) \pmod{N}$$
Searching for counterexample (PARI/GP)
CEkbc(b,c,g)=
{
for(k=1,9,
for(n=b*c+1,g,
N=k*b^n+c;
my(s=Mod(2*polchebyshev(k*b/2,1,polchebyshev(b/2,1,3)),N));
for(i=1,n-1,s=2*polchebyshev(b,1,s/2));
if(!(s==2*polchebyshev((b/2)*ceil(c/2),1,3)) && isprime(N),print(k,n))))
}
Conjecture 6
$$\text{Let} ~N=k\cdot b^n+c ~\text{such that}~ b\equiv 2,6,10 \pmod{12}, n>bc , k>0 , c>0 ~$$
$$\text{and}~ c\equiv 3,5 \pmod{8} .$$
$$\text{Let}~ S_i=P_b(S_{i-1})~ \text{with}~ S_0=P_{bk/2}(P_{b/2}(6)) , ~\text{then}$$
$$\text{If}~ N ~\text{is prime then}~ S_{n-1} \equiv -P_{(b/2)\cdot\lceil c/2 \rceil}(6) \pmod{N}$$
Searching for counterexample (PARI/GP)
CEkbc(b,c,g)=
{
for(k=1,9,
for(n=b*c+1,g,
N=k*b^n+c;
my(s=Mod(2*polchebyshev(k*b/2,1,polchebyshev(b/2,1,3)),N));
for(i=1,n-1,s=2*polchebyshev(b,1,s/2));
if(!(s==N-2*polchebyshev((b/2)*ceil(c/2),1,3)) && isprime(N),print(k,n))))
}
Any hint will be appreciated .