How to prove that these conjectures are true?
Definition: Let $P_m(x)=2^{-m}\cdot \left(\left(x-\sqrt{x^2-4}\right)^{m}+\left(x+\sqrt{x^2-4}\right)^{m}\right)$, where $m$ and $x$ are nonnegative integers.
Conjecture 1: Let $N= b^n-b-1$ such that $n>2$, $b \equiv 0,6 \pmod{8}$. Let $S_i=P_b(S_{i-1})$ with $S_0=P_{b/2}(6)$, thus if $N$ is prime, then $S_{n-1} \equiv P_{(b+2)/2}(6) \pmod{N}$.
Conjecture 2: Let $N= b^n-b-1$ such that $n>2$, $b \equiv 2,4 \pmod{8}$. Let $S_i=P_b(S_{i-1})$ with $S_0=P_{b/2}(6)$, thus if $N$ is prime, then $S_{n-1} \equiv -P_{b/2}(6) \pmod{N}$.
Conjecture 3: Let $N= b^n+b+1$ such that $n>2$, $b \equiv 0,6 \pmod{8}$. Let $S_i=P_b(S_{i-1})$ with $S_0=P_{b/2}(6)$, thus if $N$ is prime, then $S_{n-1} \equiv P_{b/2}(6) \pmod{N}$.
Conjecture 4: Let $N= b^n+b+1$ such that $n>2$, $b \equiv 2,4 \pmod{8}$. Let $S_i=P_b(S_{i-1})$ with $S_0=P_{b/2}(6)$, thus if $N$ is prime, then $S_{n-1} \equiv -P_{(b+2)/2}(6) \pmod{N}$.
Conjecture 5: Let $N= b^n-b+1$ such that $n>3$, $b \equiv 0,2 \pmod{8}$. Let $S_i=P_b(S_{i-1})$ with $S_0=P_{b/2}(6)$, thus if $N$ is prime, then $S_{n-1} \equiv P_{b/2}(6) \pmod{N}$.
Conjecture 6: Let $N=b^n-b+1$ such that $n>3$, $b \equiv 4,6 \pmod{8}$. Let $S_i=P_b(S_{i-1})$ with $S_0=P_{b/2}(6)$, thus if $N$ is prime, then $S_{n-1} \equiv -P_{(b-2)/2}(6) \pmod{N}$.
Conjecture 7: Let $N= b^n+b-1$ such that $n>3$, $b \equiv 0,2 \pmod{8}$. Let $S_i=P_b(S_{i-1})$ with $S_0=P_{b/2}(6)$, thus if $N$ is prime, then $S_{n-1} \equiv P_{(b-2)/2}(6) \pmod{N}$.
Conjecture 8: Let $N= b^n+b-1$ such that $n>3$, $b \equiv 4,6 \pmod{8}$. Let $S_i=P_b(S_{i-1})$ with $S_0=P_{b/2}(6)$, thus if $N$ is prime, then $S_{n-1} \equiv -P_{b/2}(6) \pmod{N}$.
Any hint is appreciated.