Let $a_1,a_2,\ldots,a_n$ be positive real numbers. Is it always true that $$\sum_{i=1}^n\frac{1}{a_i}-\sum_{1\leq i<j\leq n}\frac{1}{a_i+a_j}+\sum_{1\leq i<j<k\leq n}\frac{1}{a_i+a_j+a_k}-\cdots+\frac{(-1)^{n-1}}{a_1+\ldots+a_n}>0?$$
The inequality is trivially true when $n=1,2$. For $n=3$, we have $$\frac{1}{a_1}>\frac{1}{a_1+a_2},\frac{1}{a_2}>\frac{1}{a_2+a_3},\frac{1}{a_3}>\frac{1}{a_3+a_1}, \frac{1}{a_1+a_2+a_3}>0.$$ For $n=4$ it is harder to compare terms directly.
Note: This is related to this question about inclusion-exclusion-like sum, but neither question implies the other.