Is there someone show me how do I prove this , I guess this inequality hold
only if $x=0$ .
Let $x_1,x_2,\ldots,x_n>0$. Prove that
$$\sum_{i=1}^n\frac{1}{x_i}-\sum_{i<j}\frac{1}{x_i+x_j}+\sum_{i<j<k}\frac{1}{x_i+x_j+x_k}-\cdots+(-1)^{n-1}\frac{1}{x_1+\ldots+x_n}>0.$$