Consider this post an appendix to @achillehui's brilliant solution, which arrives at the following elliptic integral for the overall area:
$$\mathcal{A}=\sqrt{8}+\int_{1}^{\phi}\sqrt{\frac{1+x-x^{2}}{x\left(1+x\right)}}\,\mathrm{d}x=:\sqrt{8}+\mathcal{B},\tag{1}$$
where as usual $\phi$ denotes the golden ratio. I found this problem extremely interesting and just couldn't resist leaving that last integral unevaluated. The work below addresses the nuts and bolts of evaluating this elliptic integral as a particular case of a more general integral.
For real parameters $a,b,c,d,z\in\mathbb{R}\land d<c<b\le z<a$, define $\mathcal{E}{\left(a,b,c,d;z\right)}$ via the integral
$$\mathcal{E}{\left(a,b,c,d;z\right)}:=\int_{z}^{a}\sqrt{\frac{\left(a-x\right)\left(x-c\right)}{\left(x-b\right)\left(x-d\right)}}\,\mathrm{d}x.\tag{2}$$
For convenience we define ahead of time the auxiliary parameters
$$\begin{cases}
&\theta:=\arcsin{\left(\sqrt{\frac{\left(a-c\right)\left(z-b\right)}{\left(a-b\right)\left(z-c\right)}}\right)},\\
&\kappa:=\sqrt{\frac{\left(a-b\right)\left(c-d\right)}{\left(a-c\right)\left(b-d\right)}},\\
&\nu:=\frac{a-b}{a-c}.\tag{3}\\
\end{cases}$$
The key to putting the elliptic integral $\mathcal{E}$ into something more closely resembling standard form the "magic" quadratic transformation,
$$\sqrt{\frac{\left(a-c\right)\left(x-b\right)}{\left(a-b\right)\left(x-c\right)}}=y\implies x=\frac{b\left(a-c\right)-c\left(a-b\right)y^{2}}{\left(a-c\right)-\left(a-b\right)y^{2}}.\tag{4}$$
$$\begin{align}
\mathcal{E}{\left(a,b,c,d;z\right)}
&=\int_{z}^{a}\sqrt{\frac{\left(a-x\right)\left(x-c\right)}{\left(x-b\right)\left(x-d\right)}}\,\mathrm{d}x\\
&=\int_{\sin{\theta}}^{1}\frac{2\left(a-b\right)\left(b-c\right)y}{\left(a-c\right)\left(1-\nu y^{2}\right)^{2}}\sqrt{\frac{\left(a-c\right)\left(1-y^{2}\right)}{\left(b-d\right)y^{2}\left(1-\kappa^{2}y^{2}\right)}}\,\mathrm{d}y\\
&=\frac{2\left(a-b\right)\left(b-c\right)}{\sqrt{\left(a-c\right)\left(b-d\right)}}\int_{\sin{\theta}}^{1}\frac{\mathrm{d}y}{\left(1-\nu y^{2}\right)^{2}}\sqrt{\frac{1-y^{2}}{1-\kappa^{2}y^{2}}}.\tag{5}\\
\end{align}$$
Defining another auxiliary function,
$$f{\left(\kappa,\nu;\theta\right)}:=\int_{\sin{\theta}}^{1}\frac{\mathrm{d}y}{\left(1-\nu y^{2}\right)^{2}}\sqrt{\frac{1-y^{2}}{1-\kappa^{2}y^{2}}},\tag{6}$$
we then find,
$$\begin{align}
f{\left(\kappa,\nu;\theta\right)}
&=\int_{\sin{\theta}}^{1}\frac{\mathrm{d}y}{\left(1-\nu y^{2}\right)^{2}}\sqrt{\frac{1-y^{2}}{1-\kappa^{2}y^{2}}}\\
&=\int_{\sin{\theta}}^{1}\frac{1-y^{2}}{\left(1-\nu y^{2}\right)^{2}}\cdot\frac{\mathrm{d}y}{\sqrt{\left(1-y^{2}\right)\left(1-\kappa^{2}y^{2}\right)}}\\
&=\int_{\sin{\theta}}^{1}\frac{\left(1-\nu y^{2}\right)+\left(\nu y^{2}-y^{2}\right)}{\left(1-\nu y^{2}\right)^{2}}\cdot\frac{\mathrm{d}y}{\sqrt{\left(1-y^{2}\right)\left(1-\kappa^{2}y^{2}\right)}}\\
&=\int_{\sin{\theta}}^{1}\frac{\mathrm{d}y}{\left(1-\nu y^{2}\right)\sqrt{\left(1-y^{2}\right)\left(1-\kappa^{2}y^{2}\right)}}\\
&~~~~~-\left(1-\nu\right)\int_{\sin{\theta}}^{1}\frac{y^{2}}{\left(1-\nu y^{2}\right)^{2}}\cdot\frac{\mathrm{d}y}{\sqrt{\left(1-y^{2}\right)\left(1-\kappa^{2}y^{2}\right)}}\\
&=\int_{\sin{\theta}}^{1}\frac{\mathrm{d}y}{\left(1-\nu y^{2}\right)\sqrt{\left(1-y^{2}\right)\left(1-\kappa^{2}y^{2}\right)}}\\
&~~~~~-\left(1-\nu\right)\frac{\partial}{\partial\nu}\int_{\sin{\theta}}^{1}\frac{\mathrm{d}y}{\left(1-\nu y^{2}\right)\sqrt{\left(1-y^{2}\right)\left(1-\kappa^{2}y^{2}\right)}}\\
&=\left[1-\left(1-\nu\right)\frac{\partial}{\partial\nu}\right]\int_{\sin{\theta}}^{1}\frac{\mathrm{d}y}{\left(1-\nu y^{2}\right)\sqrt{\left(1-y^{2}\right)\left(1-\kappa^{2}y^{2}\right)}}\\
&=\left[1-\left(1-\nu\right)\partial_{\nu}\right]\left[\Pi{\left(\nu,\kappa\right)}-\Pi{\left(\theta,\nu,\kappa\right)}\right].\tag{7}\\
\end{align}$$
Caution: out of force of habit, I use the argument conventions for denoting elliptic integrals that are adopted in Gradshteyn et. al, which differs slightly from that of many other common sources (such as an Wolfram-related reference or software).
Using the partial derivative formula
$$\small{\partial_{\nu}\Pi{\left(\theta,\nu,\kappa\right)}=\frac{E{\left(\theta,\kappa\right)}+\frac{\kappa^{2}-\nu}{\nu}F{\left(\theta,\kappa\right)}+\frac{\nu^{2}-\kappa^{2}}{\nu}\Pi{\left(\theta,\nu,\kappa\right)}-\frac{\nu\sin{\left(2\theta\right)}\sqrt{1-\kappa^{2}\sin^{2}{\left(\theta\right)}}}{2\left(1-\nu\sin^{2}{\left(\theta\right)}\right)}}{2\left(\kappa^{2}-\nu\right)\left(\nu-1\right)}},\tag{8}$$
we then find,
$$\begin{align}
f{\left(\kappa,\nu;\theta\right)}
&=\left[1-\left(1-\nu\right)\frac{\partial}{\partial\nu}\right]\left[\Pi{\left(\nu,\kappa\right)}-\Pi{\left(\theta,\nu,\kappa\right)}\right]\\
&=\frac{E{\left(\kappa\right)}+\frac{\kappa^{2}-\nu}{\nu}K{\left(\kappa\right)}+\frac{2\nu\kappa^{2}-\nu^{2}-\kappa^{2}}{\nu}\Pi{\left(\nu,\kappa\right)}}{2\left(\kappa^{2}-\nu\right)}\\
&~~~~~\small{-\frac{E{\left(\theta,\kappa\right)}+\frac{\kappa^{2}-\nu}{\nu}F{\left(\theta,\kappa\right)}+\frac{2\nu\kappa^{2}-\nu^{2}-\kappa^{2}}{\nu}\Pi{\left(\theta,\nu,\kappa\right)}-\frac{\nu\sin{\left(2\theta\right)}\sqrt{1-\kappa^{2}\sin^{2}{\left(\theta\right)}}}{2\left(1-\nu\sin^{2}{\left(\theta\right)}\right)}}{2\left(\kappa^{2}-\nu\right)}}.\\
\end{align}$$
Suppose now that $a+c+d=0\land c\ge b-a\land b\le0$. Then, setting $z=a+c$ we have
$$\begin{cases}
&\theta=\arcsin{\left(\sqrt{\frac{\left(a-c\right)\left(a-b+c\right)}{\left(a-b\right)a}}\right)},\\
&\kappa=\sqrt{\frac{\left(a-b\right)\left(a+2c\right)}{\left(a-c\right)\left(a+b+c\right)}},\\
&\nu=\frac{a-b}{a-c}.\\
\end{cases}$$
Also setting $c=1-a\land b=0$, yields
$$\begin{cases}
&\theta=\arcsin{\left(\frac{\sqrt{2a-1}}{a}\right)},\\
&\kappa=\sqrt{\frac{a\left(2-a\right)}{2a-1}},\\
&\nu=\frac{a}{2a-1}.\\
\end{cases}$$
Under these conditions, we can make the simplifications
$$\begin{align}
f{\left(\kappa,\nu;\theta\right)}
&=\frac{E{\left(\kappa\right)}+\frac{\kappa^{2}-\nu}{\nu}K{\left(\kappa\right)}+\frac{2\nu\kappa^{2}-\nu^{2}-\kappa^{2}}{\nu}\Pi{\left(\nu,\kappa\right)}}{2\left(\kappa^{2}-\nu\right)}\\
&~~~~~\small{-\frac{E{\left(\theta,\kappa\right)}+\frac{\kappa^{2}-\nu}{\nu}F{\left(\theta,\kappa\right)}+\frac{2\nu\kappa^{2}-\nu^{2}-\kappa^{2}}{\nu}\Pi{\left(\theta,\nu,\kappa\right)}-\frac{\nu\sin{\left(2\theta\right)}\sqrt{1-\kappa^{2}\sin^{2}{\left(\theta\right)}}}{2\left(1-\nu\sin^{2}{\left(\theta\right)}\right)}}{2\left(\kappa^{2}-\nu\right)}}\\
&=\frac{K{\left(\kappa\right)}-F{\left(\theta,\kappa\right)}}{2\nu}+\frac{\Pi{\left(\nu,\kappa\right)}-\Pi{\left(\theta,\nu,\kappa\right)}}{a}\\
&~~~~~+\frac{E{\left(\kappa\right)}-E{\left(\theta,\kappa\right)}}{2\left(\kappa^{2}-\nu\right)}+\frac{\sin{\left(2\theta\right)}\sqrt{1-\kappa^{2}\sin^{2}{\left(\theta\right)}}}{4\left(1-a\right)\left(1-\nu\sin^{2}{\left(\theta\right)}\right)}\\
&=\frac{\left(2a-1\right)\left[K{\left(\kappa\right)}-F{\left(\theta,\kappa\right)}\right]}{2a}+\frac{\Pi{\left(\nu,\kappa\right)}-\Pi{\left(\theta,\nu,\kappa\right)}}{a}\\
&~~~~~-\frac{\left(2a-1\right)\left[E{\left(\kappa\right)}-E{\left(\theta,\kappa\right)}\right]}{2a\left(a-1\right)}-\frac{1}{a}\sqrt{\frac{2a-1}{2a\left(a-1\right)}}.\\
\end{align}$$
Thus, for $1<a<2$ we obtain
$$\begin{align}
\mathcal{E}{\left(a,0,1-a,-1;1\right)}
&=\frac{2a\left(a-1\right)}{\sqrt{2a-1}}\,f{\left(\kappa,\nu;\theta\right)}\\
&=\left(a-1\right)\sqrt{2a-1}\left[K{\left(\kappa\right)}-F{\left(\theta,\kappa\right)}\right]\\
&~~~~~-\sqrt{2a-1}\left[E{\left(\kappa\right)}-E{\left(\theta,\kappa\right)}\right]\\
&~~~~~+\frac{2\left(a-1\right)\left[\Pi{\left(\nu,\kappa\right)}-\Pi{\left(\theta,\nu,\kappa\right)}\right]}{\sqrt{2a-1}}\\
&~~~~~-\sqrt{\frac{2\left(a-1\right)}{a}}.\tag{9}\\
\end{align}$$
Now, the particular case we're interested in is when $a$ takes the value of the golden ratio, $\phi=\frac{1+\sqrt{5}}{2}$, defined of course by the classical condition,
$$\phi=\frac{1}{\phi-1};~~~\small{\phi>0}.$$
A constant associated with $\phi$ is the so-called golden ratio conjugate,
$$\Phi:=\frac{1}{\phi}.$$
We finally obtain a closed form for the quantity $\mathcal{B}$ as follows:
$$\begin{align}
\mathcal{B}
&=\mathcal{E}{\left(\phi,0,1-\phi,-1;1\right)}\\
&=\mathcal{E}{\left(\phi,0,-\Phi,-1;1\right)}\\
&=\left(\phi-1\right)\sqrt{2\phi-1}\left[K{\left(\kappa\right)}-F{\left(\theta,\kappa\right)}\right]\\
&~~~~~-\sqrt{2\phi-1}\left[E{\left(\kappa\right)}-E{\left(\theta,\kappa\right)}\right]\\
&~~~~~+\frac{2\left(\phi-1\right)\left[\Pi{\left(\nu,\kappa\right)}-\Pi{\left(\theta,\nu,\kappa\right)}\right]}{\sqrt{2\phi-1}}\\
&~~~~~-\sqrt{\frac{2\left(\phi-1\right)}{\phi}}\\
&=\Phi\sqrt[4]{5}\left[K{\left(\kappa\right)}-F{\left(\theta,\kappa\right)}\right]-\sqrt[4]{5}\left[E{\left(\kappa\right)}-E{\left(\theta,\kappa\right)}\right]\\
&~~~~~+\frac{2\Phi}{\sqrt[4]{5}}\left[\Pi{\left(\nu,\kappa\right)}-\Pi{\left(\theta,\nu,\kappa\right)}\right]-\Phi\sqrt{2},\tag{10a}\\
\end{align}$$
where
$$\begin{cases}
&\theta=\arcsin{\left(\frac{\sqrt{2\phi-1}}{\phi}\right)},\\
&\kappa=\sqrt{\frac{\phi\left(2-\phi\right)}{2\phi-1}},\\
&\nu=\frac{\phi}{2\phi-1}.\tag{10b}\\
\end{cases}$$
Result $(10)$ above is potentially a place to step, but the six separate elliptic integral terms make the expression too cumbersome to fool with if we don't have too. Since each elliptic integral term has the same elliptic modulus $\kappa$, simplification seems very likely. I'll update my response if I make any progress towards a simplified final value.