To obtain easy "direct" proofs it is convenient to work directly with divisibility relations, $ $ in particular to rewrite "$a$ is a unit" as $\,a\mid 1.\,$ Then we can use standard divisibility properties such as this property: $ $ if $\,a\mid r\,$ then $\,r\mid a\color{#c00}{\iff} r/a\mid 1,\,$ by scaling or canceling $\,a.\,$ Combining this with $\,a\mid r,\ r\mid a\,\Rightarrow\, a,r\,$ are $\,\rm\color{#0a0}{associate},\,$ then it is mechanical to derive all of the common equivalent characterizations of "irreducible", namely:
$\begin{align} r\ \text{is irred}\!\!\overset{\rm def\!\!}\iff&\ \ r = ab\,\Rightarrow\, \quad\!a\mid 1\ \ {\rm or}\ \ \ b\mid 1\quad\text{i.e. iff $\,a\,$ or $\,b\,$ is a unit}\\
\iff&\ \ r = ab\,\Rightarrow\,\quad\! a\mid 1\ \ {\rm or}\ \, {\small \frac{r}a}\mid 1\\
\color{#c00}\iff&\ \ r = ab\,\Rightarrow\,\quad\! a\mid 1\ \ {\rm or}\,\ \ r\mid a\quad\text{i.e. iff every divisor $a$ is a unit or }\color{#0a0}{\rm associate}\\
\iff&\ \ r = ab\,\Rightarrow\, r/b\mid 1\ \ {\rm or}\,\ \ r\mid a\\
\color{#c00}\iff&\ \ \color{#0af}{r = ab}\,\Rightarrow\, \quad r\mid b\ \ {\rm or}\,\ \ r\mid a\quad \text{i.e. iff $\,r\,$ is }\,\color{#0a0}{\rm associate\,} \text{ to $\,a\,$ or $\,b\,$}\\[.2em]
\text{compare to } &\ \ \color{#90f}{r\,\mid\, ab}\:\Rightarrow\, \quad r\mid b\ \ {\rm or}\,\ \ r\mid a\quad\text{i.e. definition of $\,r\,$ is $\rm\color{#90f}{prime}$}
\end{align}$
Note the $\rm\color{#0af}{final}$ form of "irred" makes trivial the deduction that $\rm\color{#90f}{primes}$ are irreducible, i.e.
$\qquad\ \ \color{#0af}{r = ab}\,\Rightarrow\, \color{#90f}{r\mid ab}\overset{r\ \text{is prime}}\Rightarrow\ r\mid b\ \ {\rm or}\ \ r\mid a\,\Rightarrow\, r\,$ irreducible by the final form of irred