Using the substitution $x=a\sin\theta$, or otherwise, find $\int\frac{1}{x^2\sqrt{a^2-x^2}}dx$.
My attempt, $x=a\sin\theta$
$dx=a\cos (\theta)d\theta$. Then $\sqrt{a^2-x^2}=\sqrt{a^2-a^2\sin ^2(\theta)}$ The given answer is $-\frac{\sqrt{a^2-x^2}}{a^2x}+c$
How to proceed then?